被GPT4o的讀圖能力震撼到了
I will send you 11 pictures and please explain what is in the picture and guess its usage, give your answer in English and then translate into Chinese
我會(huì)發(fā)給你11張圖片,請(qǐng)解釋圖片中有什么并猜測(cè)其用途,用英語(yǔ)給出你的答案,然后翻譯成中文
?? Sure, go ahead and upload the pictures one by one. I'll describe each picture and guess its usage, then provide the translation in Chinese for you.
當(dāng)然可以,一張一張上傳照片。我將描述每個(gè)圖片并猜測(cè)其用法,然后為您提供中文翻譯。
this is picture number 1
?? This image features two illustrated portraits accompanied by names and credits. The left figure is John J. Hopfield, and the right figure is Geoffrey E. Hinton. Their illustrations likely signify their contributions and recognition in a professional or academic field. The text mentions a "Prize share," suggesting they might be recipients of a significant award or honor, such as a Nobel Prize.
這張圖片展示了兩幅插畫肖像及其名字和版權(quán)信息。左邊的圖像代表John J. Hopfield,右邊的是Geoffrey E. Hinton。這些插畫可能象征著他們?cè)谀硞€(gè)專業(yè)或?qū)W術(shù)領(lǐng)域的貢獻(xiàn)和認(rèn)可。文中提到的“獎(jiǎng)項(xiàng)份額”暗示他們可能是某個(gè)重要獎(jiǎng)項(xiàng)或榮譽(yù)(例如諾貝爾獎(jiǎng))的獲得者。
this is picture number 2
?? This image displays a famous equation from statistical mechanics, S=k?logW, which is associated with Ludwig Eduard Boltzmann, given the year 1877. This equation relates the entropy (S) of a system to the number of possible microstates (W), with k being the Boltzmann constant. It is a fundamental principle in the field of thermodynamics and statistical mechanics.
這張圖片展示了一條著名的統(tǒng)計(jì)力學(xué)方程式 S=k?logW,并與Ludwig Eduard Boltzmann 相關(guān),年份為1877。這個(gè)方程式將一個(gè)系統(tǒng)的熵(S)與可能的微觀狀態(tài)數(shù)量(W)聯(lián)系起來(lái),其中 k是玻爾茲曼常數(shù)。這是熱力學(xué)和統(tǒng)計(jì)力學(xué)領(lǐng)域的基本原理。
this is picture number 3
?? This image depicts a diagram of a neural network, specifically a restricted Boltzmann machine (RBM). The network consists of visible units (v1,v2,v3) and hidden units (h1(1),h2(1),h3(1),h4(1) in the first layer, and h1(2),h2(2),h3(2) in the second layer). The connections between these units illustrate how the input data (visible units) are connected to the hidden units in a hierarchical manner, common in machine learning and artificial intelligence applications.
這張圖片展示了一個(gè)神經(jīng)網(wǎng)絡(luò)的圖示,特別是一個(gè)受限玻爾茲曼機(jī)(RBM)。網(wǎng)絡(luò)包括可見單元 (v1,v2,v3) 和隱藏單元 (h1(1),h2(1),h3(1),h4(1)在第一層,h1(2),h2(2),h3(2) 在第二層)。這些單元之間的連接展示了輸入數(shù)據(jù)(可見單元)如何以分層方式連接到隱藏單元,這在機(jī)器學(xué)習(xí)和人工智能應(yīng)用中很常見。
this is number 4
?? This image appears to illustrate a process in a machine learning or neural network training workflow. It details the sequence of updating parameters (Jij) in different layers and embeddings, from data input to calculating loss. The process starts with the data, which goes through an embedding layer to tokenize or create patch embeddings. These embeddings pass through various layers where parameters are updated, and computations are performed. The end goal is to minimize the loss.
這張圖片似乎展示了機(jī)器學(xué)習(xí)或神經(jīng)網(wǎng)絡(luò)訓(xùn)練流程中的某個(gè)過(guò)程。它詳細(xì)描述了從數(shù)據(jù)輸入到計(jì)算損失的各層參數(shù)(Jij)更新和嵌入的順序。該過(guò)程始于數(shù)據(jù),通過(guò)嵌入層進(jìn)行標(biāo)記或創(chuàng)建補(bǔ)丁嵌入。這些嵌入通過(guò)各層,其中參數(shù)得到更新,計(jì)算得以進(jìn)行。最終目標(biāo)是最小化損失。
ising model is used to explain transformer in picture number 4, could you add more your explaination of this picture
在第4張圖片中,對(duì)變壓器的解釋使用了伊辛模型,你能對(duì)這張圖片進(jìn)行更多的解釋嗎
?? Sure, I'll expand on the explanation with a focus on the Ising model and how it relates to transformers in the context of the image.
This image illustrates the application of the Ising model to explain the workings of a transformer, a type of neural network architecture commonly used in natural language processing and other machine learning tasks. The Ising model, traditionally used in statistical mechanics to represent magnetic systems, is adapted here to illustrate how parameters and interactions in the model can represent and process data through different layers of the transformer.
1.Data Input and Embeddings (bottom layer):
- The process begins with the input data, which is tokenized or split into patches.
- These tokens or patches are converted into embeddings, which serve as the input features for the model.
2.Update Embedding Parameters:
- The embeddings are passed through multiple layers, where their respective parameters are updated iteratively.
- In each layer, the embeddings interact with each other, similar to the interaction between spins in the Ising model.
3.First Hidden Layer ( mi(1) ):
- The first set of hidden units mi(1) is computed based on the interactions (analogous to spin interactions in the Ising model).
- The parameters Jij(1) are then updated, which can be viewed as adjusting the weights of the connections between neurons.
4.Second Hidden Layer ( mi(2) ):
- The process continues to the next hidden layer mi(2) with updated parameters Jij(2).
- This hierarchical interaction reflects how information is progressively processed and refined at each layer, akin to energy state updates in the Ising model.
5.Loss Calculation (top layer):
- The final outputs are used to compute the loss, indicating the difference between the model's prediction and the actual target.
- The loss value guides the adjustments to the parameters during training, aiming to minimize errors and improve accuracy.
In summary, this image uses the Ising model as a metaphor to illustrate the complex interactions and parameter updates within a transformer model. The analogy helps to conceptualize the dynamics of data processing through layers of neural networks, emphasizing the iterative optimization and hierarchical structure.
這張圖片使用伊辛模型來(lái)解釋變壓器(Transformer)的工作原理,這是一種常用于自然語(yǔ)言處理和其他機(jī)器學(xué)習(xí)任務(wù)的神經(jīng)網(wǎng)絡(luò)架構(gòu)。傳統(tǒng)上用于統(tǒng)計(jì)力學(xué)中表示磁系統(tǒng)的伊辛模型在這里被改編來(lái)說(shuō)明模型中的參數(shù)和交互如何通過(guò)變壓器的不同層來(lái)表示和處理數(shù)據(jù)。
1.數(shù)據(jù)輸入和嵌入(底層):
- 過(guò)程從數(shù)據(jù)輸入開始,這些數(shù)據(jù)被標(biāo)記化或分割成補(bǔ)丁。
- 這些標(biāo)記或補(bǔ)丁被轉(zhuǎn)換為嵌入,作為模型的輸入特征。
2.更新嵌入?yún)?shù):
- 嵌入通過(guò)多個(gè)層,每一層的參數(shù)都會(huì)被迭代更新。
- 在每一層中,嵌入彼此交互,類似于伊辛模型中的自旋交互。
3.第一隱藏層 (mi(1) ):
- 計(jì)算第一組隱藏單元 mi(1),基于交互(類似于伊辛模型中的自旋交互)。
- 參數(shù) Jij(1) 隨后更新,這可以看作是調(diào)整神經(jīng)元之間連接的權(quán)重。
4.第二隱藏層 (mi(2) ):
- 過(guò)程繼續(xù)到下一隱藏層 mi(2),更新參數(shù)Jij(2)。
- 這種層次交互反映了信息在每一層中逐步處理和精煉,就像伊辛模型中的能量狀態(tài)更新一樣。
5.損失計(jì)算(頂層):
- 最終輸出用于計(jì)算損失,指出模型預(yù)測(cè)與實(shí)際目標(biāo)之間的差異。
- 損失值引導(dǎo)訓(xùn)練期間參數(shù)的調(diào)整,旨在最小化錯(cuò)誤并提高準(zhǔn)確性。
總之,這張圖片使用伊辛模型作為比喻來(lái)說(shuō)明變壓器模型內(nèi)部的復(fù)雜交互和參數(shù)更新。這種類比有助于概念化通過(guò)神經(jīng)網(wǎng)絡(luò)層的數(shù)據(jù)處理動(dòng)態(tài),強(qiáng)調(diào)迭代優(yōu)化和層次結(jié)構(gòu)。
this is picture number 5
?? This image contains a flowchart with various interconnected nodes and directional arrows, indicating a process or a conceptual framework likely related to machine learning or data processing. The nodes are labeled in Chinese, suggesting steps or components within the process. Here is a breakdown of the flowchart:
?語(yǔ)料 (Corpus): The starting point, likely representing the raw linguistic data.
?嵌入 (Embedding): The corpus is embedded into high-dimensional vectors.
?高維概率向量 (High-dimensional probability vectors): These vectors are then reorganized (重整化) or transformed (相變).
?范疇 (Category): The process involves categorization and interaction with an "internal world model" (內(nèi)部世界模型).
?采樣 (Sampling): Sampling is a crucial step within categorization.
?變分推斷 (Variational inference): Used for probabilistic and statistical inference from the data.
?后驗(yàn)分布 (Posterior distribution): The results feed into the posterior distribution for further analysis.
?外部模型 (External model): Interacts with the process; external model information might be used for prompting (提示) further actions.
This process integrates statistical modeling, embedding, and inference techniques, indicating a comprehensive approach to analyzing and processing data.
這張圖片包含一個(gè)流程圖,有多個(gè)相互連接的節(jié)點(diǎn)和方向箭頭,表示一個(gè)過(guò)程或概念框架,可能與機(jī)器學(xué)習(xí)或數(shù)據(jù)處理相關(guān)。節(jié)點(diǎn)上的標(biāo)簽是中文,暗示了該過(guò)程中的步驟或組件。以下是流程圖的細(xì)分:
?語(yǔ)料:起點(diǎn),可能代表原始的語(yǔ)言數(shù)據(jù)。
?嵌入:語(yǔ)料被嵌入到高維向量中。
?高維概率向量:這些向量然后被重整化或相變。
?范疇:過(guò)程中涉及分類和與“內(nèi)部世界模型”的交互。
?采樣:采樣是分類中的一個(gè)關(guān)鍵步驟。
?變分推斷:用于從數(shù)據(jù)中進(jìn)行概率統(tǒng)計(jì)推斷。
?后驗(yàn)分布:結(jié)果反饋到后驗(yàn)分布中進(jìn)一步分析。
?外部模型:與過(guò)程有交互;外部模型信息可能用于提示進(jìn)一步的行動(dòng)。
這個(gè)過(guò)程結(jié)合了統(tǒng)計(jì)建模、嵌入和推斷技術(shù),表明是一個(gè)綜合的方法來(lái)分析和處理數(shù)據(jù)。
this is picture number 6
?? This image depicts a conceptual diagram that seems to explain a process related to renormalization in physics. Here is a breakdown of the main components:
1.Physical Critical Point:
- Represents the starting critical point in a physical system, likely within the context of phase transitions or critical phenomena.
2.Renormalized Critical Point:
- Shows the adjusted or "renormalized" critical point after applying some transformation or renormalization procedure, which simplifies the system while preserving essential properties.
3.Manifolds:
- Depicts different levels of physical ( H(0) ) and renormalized manifolds ( H(1) ), which are spaces upon which physical parameters lie.
4.Critical Trajectories:
- Arrows indicate the paths or trajectories that a system follows as it evolves from the physical critical point towards fixed points under renormalization transformations.
5.Fixed Point ( H? ):
- Represents a stable state where the system remains invariant under the renormalization transformations. It's a crucial concept in understanding critical behavior in systems.
6.Renormalization Operator (Rb):
- Likely represents the operator or function applied during the renormalization procedure to scale the system parameters.
This diagram is a visual tool to explain renormalization, a technique used in theoretical physics to study behaviors of systems at different scales, especially near critical points.
這張圖片展示了一個(gè)概念圖,似乎解釋了物理學(xué)中重整化相關(guān)的過(guò)程。以下是主要組成部分的細(xì)分:
1.物理臨界點(diǎn):
- 代表物理系統(tǒng)中的起始臨界點(diǎn),可能與相變或臨界現(xiàn)象有關(guān)。
2.重整化臨界點(diǎn):
- 顯示在應(yīng)用某種轉(zhuǎn)換或重整化過(guò)程后的調(diào)整或“重整化”臨界點(diǎn),這簡(jiǎn)化了系統(tǒng)但保留了基本特性。
3.流形:
- 描繪了物理流形( H(0) )和重整化后流形( H(1) )的不同層次,這是物理參數(shù)所在的空間。
4.臨界軌跡:
- 箭頭表示系統(tǒng)從物理臨界點(diǎn)向重整化轉(zhuǎn)換下的不動(dòng)點(diǎn)演變的路徑或軌跡。
5.不動(dòng)點(diǎn)( H? ):
- 代表在重整化轉(zhuǎn)換下保持不變的穩(wěn)定狀態(tài)。這是理解系統(tǒng)在臨界行為中的重要概念。
6.重整化算子(Rb):
- 可能代表重整化過(guò)程中應(yīng)用于縮放系統(tǒng)參數(shù)的算子或函數(shù)。
這個(gè)圖表是解釋重整化的視覺工具,重整化是一種在理論物理學(xué)中用于研究系統(tǒng)在不同尺度上行為的技術(shù),特別是在臨界點(diǎn)附近。
this is number 7
??This image represents a conceptual diagram related to category theory in mathematics. It illustrates the Yoneda embedding, an essential concept in category theory.
?C:
Represents a category, which is a collection of objects and morphisms (arrows) between them, satisfying certain properties.
?Set^C^op:
Denotes the category of contravariant functors from the category C to the category of sets (Set). This essentially maps objects and morphisms in a way that reverses the direction of morphisms.
?Yoneda Embedding:
The arrow indicates the Yoneda embedding, which maps an object in category C to a functor in the category Set^C^op. This embedding provides a way to represent objects of C within a functor category of presheaves, facilitating the study of C through its functor properties.
This embedding is a powerful tool in category theory, allowing category C to be understood and analyzed through the functors it represents.
這張圖片展示了一個(gè)與數(shù)學(xué)中的范疇理論相關(guān)的概念圖,說(shuō)明了一個(gè)重要的概念——Yoneda嵌入。
?C:
代表一個(gè)范疇,這是滿足某些性質(zhì)的對(duì)象和態(tài)射(箭頭)的集合。
?Set^C^op:
表示從范疇 C到集合范疇(Set)的反變函子范疇。這本質(zhì)上是以反向映射對(duì)象和態(tài)射的方式進(jìn)行映射。
?Yoneda嵌入:
箭頭表示Yoneda嵌入,它將范疇 C中的對(duì)象映射到范疇 Set^C^op 中的函子。這種嵌入提供了一種通過(guò)預(yù)層函子類別來(lái)表示C的對(duì)象的方法,從而便于通過(guò)它的函子性質(zhì)來(lái)研究 C。
這種嵌入在范疇理論中是一個(gè)強(qiáng)有力的工具,使得可以通過(guò)它所表示的函子來(lái)理解和分析范疇 C。
and number 8
?? This image appears to be a mind map centered around the word "red." It includes various phrases and concepts associated with "red," each linked with arrows and accompanied by numerical values, which likely represent some form of correlation, similarity score, or strength of association. Here are some of the connections depicted:
?"beautiful red ruby" with a score of .71
?"red idea" with a score of .01
?"bright red ruby" with a score of .47
?"do you eat red meat" with a score of .60
?"red meat" with a score of .53
?"the warm and passionate song" with a score of .20
?"red army" with a score of .72
?"red playdate" with a score of .36
?"red blooded" with a score of .68
?"bright red lipstick" with a score of .44
?"blood red" with a score of .82
?"red ruby" with a score of .67
Each phrase or concept extends from the central word "red," representing its various associations in different contexts, possibly aiding in studies of semantics, cognitive linguistics, or marketing analysis.
這張圖片似乎是一個(gè)圍繞“紅色”一詞的思維導(dǎo)圖。它包括與“紅色”相關(guān)的各種短語(yǔ)和概念,每個(gè)短語(yǔ)和數(shù)字值相關(guān)聯(lián),這些數(shù)字可能表示某種形式的相關(guān)性、相似度分?jǐn)?shù)或關(guān)聯(lián)強(qiáng)度。以下是其中一些連接:
?"beautiful red ruby" ,分?jǐn)?shù) .71
?"red idea" ,分?jǐn)?shù) .01
?"bright red ruby" ,分?jǐn)?shù) .47
?"do you eat red meat" ,分?jǐn)?shù) .60
?"red meat" ,分?jǐn)?shù) .53
?"the warm and passionate song" ,分?jǐn)?shù) .20
?"red army" ,分?jǐn)?shù) .72
?"red playdate" ,分?jǐn)?shù) .36
?"red blooded" ,分?jǐn)?shù) .68
?"bright red lipstick" ,分?jǐn)?shù) .44
?"blood red" ,分?jǐn)?shù) .82
?"red ruby" ,分?jǐn)?shù) .67
每個(gè)短語(yǔ)或概念都延伸自中心詞“紅色”,代表其在不同背景下的各種關(guān)聯(lián),這可能有助于語(yǔ)義學(xué)研究、認(rèn)知語(yǔ)言學(xué)或市場(chǎng)分析。
number 9
?? This image contains a mathematical equation that appears to come from the field of machine learning, particularly related to neural networks and attention mechanisms.
The equation on the left-hand side:
And the equation on the right-hand side:
Here's a breakdown of the components:
?x: Input data or feature vector.
?p: Positional encoding or additional feature vector.
?Q: Weight matrix.
?d: Dimensionality or scaling factor.
?QQ?: Possibly a self-attention matrix or another transformation related to the attention mechanism.
?softmax: A function that normalizes the input into a probability distribution.
In the context of transformers, this equation is likely part of the self-attention mechanism, which helps the model weigh the importance of different parts of the input sequence. The scaling factor 1/d is commonly used to prevent the dot products from growing too large, which the softmax function then normalizes to produce attention weights.
這張圖片包含一個(gè)數(shù)學(xué)方程,似乎來(lái)自機(jī)器學(xué)習(xí)領(lǐng)域,特別是與神經(jīng)網(wǎng)絡(luò)和注意力機(jī)制相關(guān)的部分。
方程左邊:
方程右邊:
以下是組成部分的細(xì)分:
?x:輸入數(shù)據(jù)或特征向量。
?p:位置編碼或額外的特征向量。
?Q:權(quán)重矩陣。
?d:維度或縮放因子。
?QQ?:可能是自注意力矩陣或與注意力機(jī)制相關(guān)的其他變換。
?softmax:一個(gè)將輸入歸一化為概率分布的函數(shù)。
在變壓器的上下文中,這個(gè)方程可能是自注意力機(jī)制的一部分,幫助模型權(quán)衡輸入序列不同部分的重要性。縮放因子 1/d常用于防止點(diǎn)積變得太大,之后 softmax 函數(shù)則將其歸一化以生成注意力權(quán)重。
number 10
?? This image is divided into three main sections labeled A, B, and C, each contributing to the explanation of some data analysis or machine learning concept related to attention mechanisms.
Section A
Illustration of Attention Mechanism:
?Inputs and Summation:
?Inputs (D, B, D) are transformed through positional encoding ( p) and temporal encoding ( t), resulting in encoded vectors x~1,x~2,x~3.
?The resulting encoded inputs are used to create an attention map represented by matrix Aij.
?Scaled Dot-Product Attention:
?The formula at the right side shows how the attention weights Aij are calculated. These are usually based on the scaled dot-product of the encoder outputs.
?Each element Aij in the attention map is computed using the softmax function of the scaled dot-product of the query Q and key K vectors.
Section B
Semantic and Positional Interplay:
?This section visualizes the interplay between positional and semantic information in a 3D plot.
?Positional and Semantic: Axes indicating two different types of information carried by the input tokens.
?Loss Surface: The plot likely represents a loss landscape ( L ) which changes based on the balance of positional and semantic information.
Section C
Attention Maps for Example Sequences:
?Heatmaps for Different Example Sequences:
?Three sets of heatmaps (Example Sequence #1, #2, #3) shown using blue, U-shaped structures, with color-coded values indicating attention strength.
?Sequences such as letters or numbers run along the axes of each heatmap.
?Attention Values: Colormaps to the right indicate the attention value of normalized scores (where higher attention values indicate a stronger focus by the model on those elements).
?Positional vs. Semantic Representation:
?Positional Heatmaps: Display how attention is distributed purely based on the positional context of the tokens.
?Semantic Heatmaps: Show attention distribution considering the semantic context.
Summary
?Attention Mechanism in Transformers: The sections collectively help illustrate how attention mechanisms in transformer models balance positional and semantic information across sequences.
?Visualization Techniques: Both 3D plots and heatmaps provide insight into transformation and influence of input data, primarily with a focus on enhancing interpretability for language models.
這張圖片分為三部分,A,B 和 C,各自說(shuō)明了與注意力機(jī)制相關(guān)的數(shù)據(jù)分析或機(jī)器學(xué)習(xí)概念。
部分 A
注意力機(jī)制圖解:
?輸入和加法:
?輸入(D,B,D)經(jīng)過(guò)位置編碼( p )和時(shí)間編碼( t )后,生成編碼向量x~1,x~2,x~3。
?這些編碼的輸入用于創(chuàng)建一個(gè)表示為矩陣 Aij的注意力圖。
?縮放點(diǎn)積注意力:
?右側(cè)的公式展示了如何計(jì)算注意力權(quán)重 Aij,通?;诰幋a器輸出的縮放點(diǎn)積。
?注意力圖中的每個(gè)元素 Aij是通過(guò)查詢向量 Q 和鍵向量 K 的縮放點(diǎn)積的軟最大值函數(shù)計(jì)算的。
部分 B
語(yǔ)義和位置之間的交互:
?這一部分通過(guò)3D圖展示了位置信息與語(yǔ)義信息之間的交互。
?位置信息 和 語(yǔ)義信息:表示輸入 tokens 中兩種不同信息類型的坐標(biāo)軸。
?損失曲面:圖中顯示的可能是損失景觀 (L),基于位置和語(yǔ)義信息的平衡改變的曲面。
部分 C
示例序列的注意力圖:
?不同示例序列的熱力圖:
?三組熱力圖(Example Sequence #1, #2, #3)在藍(lán)色 U 形結(jié)構(gòu)中展示,顏色編碼的數(shù)值指示注意力強(qiáng)度。
?每個(gè)熱力圖的坐標(biāo)軸上排列著字母或數(shù)字序列。
?注意力數(shù)值:右側(cè)的顏色圖表示歸一化分?jǐn)?shù)的注意力數(shù)值(注意力數(shù)值越高表示模型對(duì)這些元素的關(guān)注度越強(qiáng))。
?位置與語(yǔ)義表示:
?位置熱力圖:顯示注意力如何僅基于 tokens 的位置上下文進(jìn)行分布。
?語(yǔ)義熱力圖:顯示考慮語(yǔ)義上下文的注意力分布。
總結(jié)
?變壓器中的注意力機(jī)制:這些部分共同說(shuō)明了變壓器模型中的注意力機(jī)制如何在序列中平衡位置和語(yǔ)義信息。
?可視化技術(shù):3D圖和熱力圖提供了輸入數(shù)據(jù)的轉(zhuǎn)化和影響的見解,主要是為了增強(qiáng)語(yǔ)言模型的可解釋性。
number 11
?? This image is a heatmap that represents data across two variables, αα and ωω, with a color gradient indicating the value of a third variable Δ?t. Here’s a breakdown of the elements:
1.Axes:
X-axis (α): Represents a variable range from 0 to 2.
Y-axis (ω): Represents another variable range from 0 to 0.5.
2.Color Gradient:
The color bar to the right shows the range of Δ?t values, with blue indicating lower values and pink/red indicating higher values. The gradient ranges from approximately -0.0015 to 0.0015.
3.Heatmap:
The heatmap itself is a visual representation of Δ?t values for the corresponding α and ω pairs. Each pixel's color reflects the value of Δ?t at that point.
4.Dashed Line:
?A green dashed line suggests a boundary or threshold within the data, indicating a region where there's a significant change in behavior or a phase transition.
This heatmap can be used to analyze how Δ?t varies with α and ω, helping to identify patterns, trends, or critical points in the data.
這張圖片是一個(gè)熱圖,表示在兩個(gè)變量 α 和 ω上的數(shù)據(jù),顏色漸變指示第三個(gè)變量 Δ?t的值。以下是元素的詳細(xì)信息:
1.軸線:
X軸 (α):表示從0到2的變量范圍。
Y軸 (ω):表示從0到0.5的另一個(gè)變量范圍。
2.顏色漸變:
右側(cè)的顏色條顯示 Δ?t值的范圍,藍(lán)色表示較低值,粉紅或紅色表示較高值。漸變范圍大約從 -0.0015 到 0.0015。
3.熱圖:
熱圖本身是 Δ?t值針對(duì)相應(yīng)的α和ω對(duì)的可視化表示。每個(gè)像素的顏色反映該點(diǎn) Δ?t的值。
4.虛線:
綠色的虛線暗示數(shù)據(jù)中的邊界或閾值,表明某個(gè)區(qū)域內(nèi)有顯著變化或相變的行為。
該熱圖可用于分析 Δ?t隨α和ω的變化,以幫助識(shí)別數(shù)據(jù)中的模式、趨勢(shì)或臨界點(diǎn)。
本文轉(zhuǎn)載自 ??清熙??,作者: 王慶法
