Python并發(fā)編程之線程池/進程池
引言
Python標準庫為我們提供了threading和multiprocessing模塊編寫相應(yīng)的多線程/多進程代碼,但是當(dāng)項目達到一定的規(guī)模,頻繁創(chuàng)建/銷毀進程或者線程是非常消耗資源的,這個時候我們就要編寫自己的線程池/進程池,以空間換時間。但從Python3.2開始,標準庫為我們提供了concurrent.futures模塊,它提供了ThreadPoolExecutor和ProcessPoolExecutor兩個類,實現(xiàn)了對threading和multiprocessing的進一步抽象,對編寫線程池/進程池提供了直接的支持。
Executor和Future
concurrent.futures模塊的基礎(chǔ)是Exectuor,Executor是一個抽象類,它不能被直接使用。但是它提供的兩個子類ThreadPoolExecutor和ProcessPoolExecutor卻是非常有用,顧名思義兩者分別被用來創(chuàng)建線程池和進程池的代碼。我們可以將相應(yīng)的tasks直接放入線程池/進程池,不需要維護Queue來操心死鎖的問題,線程池/進程池會自動幫我們調(diào)度。
Future這個概念相信有java和nodejs下編程經(jīng)驗的朋友肯定不陌生了,你可以把它理解為一個在未來完成的操作,這是異步編程的基礎(chǔ),傳統(tǒng)編程模式下比如我們操作queue.get的時候,在等待返回結(jié)果之前會產(chǎn)生阻塞,cpu不能讓出來做其他事情,而Future的引入幫助我們在等待的這段時間可以完成其他的操作。關(guān)于在Python中進行異步IO可以閱讀完本文之后參考我的Python并發(fā)編程之協(xié)程/異步IO。
p.s: 如果你依然在堅守Python2.x,請先安裝futures模塊。
- pip install futures
使用submit來操作線程池/進程池
我們先通過下面這段代碼來了解一下線程池的概念
- # example1.py
- from concurrent.futures import ThreadPoolExecutor
- import time
- def return_future_result(message):
- time.sleep(2)
- return message
- pool = ThreadPoolExecutor(max_workers=2) # 創(chuàng)建一個***可容納2個task的線程池
- future1 = pool.submit(return_future_result, ("hello")) # 往線程池里面加入一個task
- future2 = pool.submit(return_future_result, ("world")) # 往線程池里面加入一個task
- print(future1.done()) # 判斷task1是否結(jié)束
- time.sleep(3)
- print(future2.done()) # 判斷task2是否結(jié)束
- print(future1.result()) # 查看task1返回的結(jié)果
- print(future2.result()) # 查看task2返回的結(jié)果
我們根據(jù)運行結(jié)果來分析一下。我們使用submit方法來往線程池中加入一個task,submit返回一個Future對象,對于Future對象可以簡單地理解為一個在未來完成的操作。在***個print語句中很明顯因為time.sleep(2)的原因我們的future1沒有完成,因為我們使用time.sleep(3)暫停了主線程,所以到第二個print語句的時候我們線程池里的任務(wù)都已經(jīng)全部結(jié)束。
- ziwenxie :: ~ » python example1.py
- False
- True
- hello
- world
- # 在上述程序執(zhí)行的過程中,通過ps命令我們可以看到三個線程同時在后臺運行
- ziwenxie :: ~ » ps -eLf | grep python
- ziwenxie 8361 7557 8361 3 3 19:45 pts/0 00:00:00 python example1.py
- ziwenxie 8361 7557 8362 0 3 19:45 pts/0 00:00:00 python example1.py
- ziwenxie 8361 7557 8363 0 3 19:45 pts/0 00:00:00 python example1.py
上面的代碼我們也可以改寫為進程池形式,api和線程池如出一轍,我就不羅嗦了。
- # example2.py
- from concurrent.futures import ProcessPoolExecutor
- import time
- def return_future_result(message):
- time.sleep(2)
- return message
- pool = ProcessPoolExecutor(max_workers=2)
- future1 = pool.submit(return_future_result, ("hello"))
- future2 = pool.submit(return_future_result, ("world"))
- print(future1.done())
- time.sleep(3)
- print(future2.done())
- print(future1.result())
- print(future2.result())
下面是運行結(jié)果
- ziwenxie :: ~ » python example2.py
- False
- True
- hello
- world
- ziwenxie :: ~ » ps -eLf | grep python
- ziwenxie 8560 7557 8560 3 3 19:53 pts/0 00:00:00 python example2.py
- ziwenxie 8560 7557 8563 0 3 19:53 pts/0 00:00:00 python example2.py
- ziwenxie 8560 7557 8564 0 3 19:53 pts/0 00:00:00 python example2.py
- ziwenxie 8561 8560 8561 0 1 19:53 pts/0 00:00:00 python example2.py
- ziwenxie 8562 8560 8562 0 1 19:53 pts/0 00:00:00 python example2.py
使用map/wait來操作線程池/進程池
除了submit,Exectuor還為我們提供了map方法,和內(nèi)建的map用法類似,下面我們通過兩個例子來比較一下兩者的區(qū)別。
使用submit操作回顧
- # example3.py
- import concurrent.futures
- import urllib.request
- URLS = ['http://httpbin.org', 'http://example.com/', 'https://api.github.com/']
- def load_url(url, timeout):
- with urllib.request.urlopen(url, timeouttimeout=timeout) as conn:
- return conn.read()
- # We can use a with statement to ensure threads are cleaned up promptly
- with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor:
- # Start the load operations and mark each future with its URL
- future_to_url = {executor.submit(load_url, url, 60): url for url in URLS}
- for future in concurrent.futures.as_completed(future_to_url):
- url = future_to_url[future]
- try:
- data = future.result()
- except Exception as exc:
- print('%r generated an exception: %s' % (url, exc))
- else:
- print('%r page is %d bytes' % (url, len(data)))
從運行結(jié)果可以看出,as_completed不是按照URLS列表元素的順序返回的。
- ziwenxie :: ~ » python example3.py
- 'http://example.com/' page is 1270 byte
- 'https://api.github.com/' page is 2039 bytes
- 'http://httpbin.org' page is 12150 bytes
使用map
- # example4.py
- import concurrent.futures
- import urllib.request
- URLS = ['http://httpbin.org', 'http://example.com/', 'https://api.github.com/']
- def load_url(url):
- with urllib.request.urlopen(url, timeout=60) as conn:
- return conn.read()
- # We can use a with statement to ensure threads are cleaned up promptly
- with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor:
- for url, data in zip(URLS, executor.map(load_url, URLS)):
- print('%r page is %d bytes' % (url, len(data)))
從運行結(jié)果可以看出,map是按照URLS列表元素的順序返回的,并且寫出的代碼更加簡潔直觀,我們可以根據(jù)具體的需求任選一種。
- ziwenxie :: ~ » python example4.py
- 'http://httpbin.org' page is 12150 bytes
- 'http://example.com/' page is 1270 bytes
- 'https://api.github.com/' page is 2039 bytes
第三種選擇wait
wait方法接會返回一個tuple(元組),tuple中包含兩個set(集合),一個是completed(已完成的)另外一個是uncompleted(未完成的)。使用wait方法的一個優(yōu)勢就是獲得更大的自由度,它接收三個參數(shù)FIRST_COMPLETED, FIRST_EXCEPTION 和ALL_COMPLETE,默認設(shè)置為ALL_COMPLETED。
我們通過下面這個例子來看一下三個參數(shù)的區(qū)別
- from concurrent.futures import ThreadPoolExecutor, wait, as_completed
- from time import sleep
- from random import randint
- def return_after_random_secs(num):
- sleep(randint(1, 5))
- return "Return of {}".format(num)
- pool = ThreadPoolExecutor(5)
- futures = []
- for x in range(5):
- futures.append(pool.submit(return_after_random_secs, x))
- print(wait(futures))
- # print(wait(futures, timeout=None, return_when='FIRST_COMPLETED'))
如果采用默認的ALL_COMPLETED,程序會阻塞直到線程池里面的所有任務(wù)都完成。
ziwenxie :: ~ » python example5.py
DoneAndNotDoneFutures(done={
<Future at 0x7f0b06c9bc88 state=finished returned str>,
<Future at 0x7f0b06cbaa90 state=finished returned str>,
<Future at 0x7f0b06373898 state=finished returned str>,
<Future at 0x7f0b06352ba8 state=finished returned str>,
<Future at 0x7f0b06373b00 state=finished returned str>}, not_done=set())
如果采用FIRST_COMPLETED參數(shù),程序并不會等到線程池里面所有的任務(wù)都完成。
- ziwenxie :: ~ » python example5.py
- DoneAndNotDoneFutures(done={
- <Future at 0x7f84109edb00 state=finished returned str>,
- <Future at 0x7f840e2e9320 state=finished returned str>,
- <Future at 0x7f840f25ccc0 state=finished returned str>},
- not_done={<Future at 0x7f840e2e9ba8 state=running>,
- <Future at 0x7f840e2e9940 state=running>})
思考題
寫一個小程序?qū)Ρ萴ultiprocessing.pool(ThreadPool)和ProcessPollExecutor(ThreadPoolExecutor)在執(zhí)行效率上的差距,結(jié)合上面提到的Future思考為什么會造成這樣的結(jié)果。
【責(zé)任編輯:seeker TEL:(010)68476606】