自拍偷在线精品自拍偷,亚洲欧美中文日韩v在线观看不卡

【深度學(xué)習(xí)系列】用PaddlePaddle進(jìn)行車牌識(shí)別(一)

企業(yè)動(dòng)態(tài)
小伙伴們,終于到了實(shí)戰(zhàn)部分了!今天給大家?guī)淼捻?xiàng)目是用PaddlePaddle進(jìn)行車牌識(shí)別。車牌識(shí)別其實(shí)屬于比較常見的圖像識(shí)別的項(xiàng)目了,目前也屬于比較成熟的應(yīng)用,大多數(shù)老牌廠家能做到準(zhǔn)確率99%+。

小伙伴們,終于到了實(shí)戰(zhàn)部分了!今天給大家?guī)淼捻?xiàng)目是用PaddlePaddle進(jìn)行車牌識(shí)別。車牌識(shí)別其實(shí)屬于比較常見的圖像識(shí)別的項(xiàng)目了,目前也屬于比較成熟的應(yīng)用,大多數(shù)老牌廠家能做到準(zhǔn)確率99%+。傳統(tǒng)的方法需要對(duì)圖像進(jìn)行多次預(yù)處理再用機(jī)器學(xué)習(xí)的分類算法進(jìn)行分類識(shí)別,然而深度學(xué)習(xí)發(fā)展起來以后,我們可以通過用CNN來進(jìn)行端對(duì)端的車牌識(shí)別。任何模型的訓(xùn)練都離不開數(shù)據(jù),在車牌識(shí)別中,除了晚上能下載到的一些包含車牌的數(shù)據(jù)是不夠的,本篇文章的主要目的是教大家如何批量生成車牌。


生成車牌數(shù)據(jù)

  1.定義車牌數(shù)據(jù)所需字符

  車牌中包括省份簡(jiǎn)稱、大寫英文字母和數(shù)字,我們首先定義需要的字符和字典,方便后面使用

 
 1 index = {"京": 0, "滬": 1, "津": 2, "渝": 3, "冀": 4, "晉": 5, "蒙": 6, "遼": 7, "吉": 8, "黑": 9, "蘇": 10, "浙": 11, "皖": 12,
 2          "閩": 13, "贛": 14, "魯": 15, "豫": 16, "鄂": 17, "湘": 18, "粵": 19, "桂": 20, "瓊": 21, "川": 22, "貴": 23, "云": 24,
 3          "藏": 25, "陜": 26, "甘": 27, "青": 28, "寧": 29, "新": 30, "0": 31, "1": 32, "2": 33, "3": 34, "4": 35, "5": 36,
 4          "6": 37, "7": 38, "8": 39, "9": 40, "A": 41, "B": 42, "C": 43, "D": 44, "E": 45, "F": 46, "G": 47, "H": 48,
 5          "J": 49, "K": 50, "L": 51, "M": 52, "N": 53, "P": 54, "Q": 55, "R": 56, "S": 57, "T": 58, "U": 59, "V": 60,
 6          "W": 61, "X": 62, "Y": 63, "Z": 64};
 7 
 8 chars = ["京", "滬", "津", "渝", "冀", "晉", "蒙", "遼", "吉", "黑", "蘇", "浙", "皖", "閩", "贛", "魯", "豫", "鄂", "湘", "粵", "桂",
 9              "瓊", "川", "貴", "云", "藏", "陜", "甘", "青", "寧", "新", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A",
10              "B", "C", "D", "E", "F", "G", "H", "J", "K", "L", "M", "N", "P", "Q", "R", "S", "T", "U", "V", "W", "X",
11              "Y", "Z"
12              ];

 

  2.生成中英文字符

 
 1 def GenCh(f,val):
 2     """
 3     生成中文字符
 4     """
 5     img=Image.new("RGB", (45,70),(255,255,255))
 6     draw = ImageDraw.Draw(img)
 7     draw.text((0, 3),val,(0,0,0),font=f)
 8     img =  img.resize((23,70))
 9     A = np.array(img)
10     return A
11 
12 def GenCh1(f,val):
13     """
14     生成英文字符
15     """
16     img=Image.new("RGB", (23,70),(255,255,255))
17     draw = ImageDraw.Draw(img)
18     draw.text((0, 2),val.decode('utf-8'),(0,0,0),font=f)
19     A = np.array(img)
20     return A
 

  3.對(duì)數(shù)據(jù)添加各種噪音和畸變,模糊處理

 
 1 def AddSmudginess(img, Smu):
 2     rows = r(Smu.shape[0] - 50)
 3     cols = r(Smu.shape[1] - 50)
 4     adder = Smu[rows:rows + 50, cols:cols + 50];
 5     adder = cv2.resize(adder, (50, 50));
 6     #adder = cv2.bitwise_not(adder)
 7     img = cv2.resize(img,(50,50))
 8     img = cv2.bitwise_not(img)
 9     img = cv2.bitwise_and(adder, img)
10     img = cv2.bitwise_not(img)
11     return img
12 
13 
14 def rot(img,angel,shape,max_angel):
15     """
16         添加放射畸變
17         img 輸入圖像
18         factor 畸變的參數(shù)
19         size 為圖片的目標(biāo)尺寸
20     """
21     size_o = [shape[1],shape[0]]
22     size = (shape[1]+ int(shape[0]*cos((float(max_angel )/180) * 3.14)),shape[0])
23     interval = abs( int( sin((float(angel) /180) * 3.14)* shape[0]));
24     pts1 = np.float32([[0,0],[0,size_o[1]],[size_o[0],0],[size_o[0],size_o[1]]])
25     if(angel>0):
26         pts2 = np.float32([[interval,0],[0,size[1]  ],[size[0],0  ],[size[0]-interval,size_o[1]]])
27     else:
28         pts2 = np.float32([[0,0],[interval,size[1]  ],[size[0]-interval,0  ],[size[0],size_o[1]]])
29     M  = cv2.getPerspectiveTransform(pts1,pts2);
30     dst = cv2.warpPerspective(img,M,size);
31     return dst
32 
33 
34 def rotRandrom(img, factor, size):
35     """
36     添加透視畸變
37     """
38     shape = size;
39     pts1 = np.float32([[0, 0], [0, shape[0]], [shape[1], 0], [shape[1], shape[0]]])
40     pts2 = np.float32([[r(factor), r(factor)], [ r(factor), shape[0] - r(factor)], [shape[1] - r(factor),  r(factor)],
41                        [shape[1] - r(factor), shape[0] - r(factor)]])
42     M = cv2.getPerspectiveTransform(pts1, pts2);
43     dst = cv2.warpPerspective(img, M, size);
44     return dst
45 
46 def tfactor(img):
47     """
48     添加飽和度光照的噪聲
49     """
50     hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV);
51     hsv[:,:,0] = hsv[:,:,0]*(0.8+ np.random.random()*0.2);
52     hsv[:,:,1] = hsv[:,:,1]*(0.3+ np.random.random()*0.7);
53     hsv[:,:,2] = hsv[:,:,2]*(0.2+ np.random.random()*0.8);
54 
55     img = cv2.cvtColor(hsv,cv2.COLOR_HSV2BGR);
56     return img
57 
58 def random_envirment(img,data_set):
59     """
60     添加自然環(huán)境的噪聲
61     """
62     index=r(len(data_set))
63     env = cv2.imread(data_set[index])
64     env = cv2.resize(env,(img.shape[1],img.shape[0]))
65     bak = (img==0);
66     bak = bak.astype(np.uint8)*255;
67     inv = cv2.bitwise_and(bak,env)
68     img = cv2.bitwise_or(inv,img)
69     return img
70 
71 def AddGauss(img, level):
72     """
73     添加高斯模糊
74     """
75     return cv2.blur(img, (level * 2 + 1, level * 2 + 1));
76 
77 def r(val):
78     return int(np.random.random() * val)
79 
80 def AddNoiseSingleChannel(single):
81     """
82     添加高斯噪聲
83     """
84     diff = 255-single.max();
85     noise = np.random.normal(0,1+r(6),single.shape);
86     noise = (noise - noise.min())/(noise.max()-noise.min())
87     noise= diff*noise;
88     noise= noise.astype(np.uint8)
89     dst = single + noise
90     return dst
91 
92 def addNoise(img,sdev = 0.5,avg=10):
93     img[:,:,0] =  AddNoiseSingleChannel(img[:,:,0]);
94     img[:,:,1] =  AddNoiseSingleChannel(img[:,:,1]);
95     img[:,:,2] =  AddNoiseSingleChannel(img[:,:,2]);
96     return img

 

  4.加入背景圖片,生成車牌字符串list和label,并存為圖片格式,批量生成。

 
 1 class GenPlate:
 2 
 3     def __init__(self,fontCh,fontEng,NoPlates):
 4         self.fontC =  ImageFont.truetype(fontCh,43,0);
 5         self.fontE =  ImageFont.truetype(fontEng,60,0);
 6         self.img=np.array(Image.new("RGB", (226,70),(255,255,255)))
 7         self.bg  = cv2.resize(cv2.imread("./images/template.bmp"),(226,70));
 8         self.smu = cv2.imread("./images/smu2.jpg");
 9         self.noplates_path = [];
10         for parent,parent_folder,filenames in os.walk(NoPlates):
11             for filename in filenames:
12                 path = parent+"/"+filename;
13                 self.noplates_path.append(path);
14 
15 
16     def draw(self,val):
17         offset= 2 ;
18         self.img[0:70,offset+8:offset+8+23]= GenCh(self.fontC,val[0]);
19         self.img[0:70,offset+8+23+6:offset+8+23+6+23]= GenCh1(self.fontE,val[1]);
20         for i in range(5):
21             base = offset+8+23+6+23+17 +i*23 + i*6 ;
22             self.img[0:70, base  : base+23]= GenCh1(self.fontE,val[i+2]);
23         return self.img
24     
25     def generate(self,text):
26         if len(text) == 9:
27             fg = self.draw(text.decode(encoding="utf-8"));
28             fg = cv2.bitwise_not(fg);
29             com = cv2.bitwise_or(fg,self.bg);
30             com = rot(com,r(60)-30,com.shape,30);
31             com = rotRandrom(com,10,(com.shape[1],com.shape[0]));
32             com = tfactor(com)
33             com = random_envirment(com,self.noplates_path);
34             com = AddGauss(com, 1+r(4));
35             com = addNoise(com);
36             return com
37 
38     def genPlateString(self,pos,val):
39         '''
40     生成車牌String,存為圖片
41         生成車牌list,存為label
42         '''
43         plateStr = "";
44         plateList=[]
45         box = [0,0,0,0,0,0,0];
46         if(pos!=-1):
47             box[pos]=1;
48         for unit,cpos in zip(box,range(len(box))):
49             if unit == 1:
50                 plateStr += val
51                 #print plateStr
52                 plateList.append(val)
53             else:
54                 if cpos == 0:
55                     plateStr += chars[r(31)]
56                     plateList.append(plateStr)
57                 elif cpos == 1:
58                     plateStr += chars[41+r(24)]
59                     plateList.append(plateStr)
60                 else:
61                     plateStr += chars[31 + r(34)]
62                     plateList.append(plateStr)
63         plate = [plateList[0]]
64         b = [plateList[i][-1] for i in range(len(plateList))]
65         plate.extend(b[1:7])
66         return plateStr,plate
67 
68     # 將生成的車牌圖片寫入文件夾,對(duì)應(yīng)的label寫入label.txt
69     def genBatch(self, batchSize,pos,charRange, outputPath,size):
70         if (not os.path.exists(outputPath)):
71             os.mkdir(outputPath)
72     outfile = open('label.txt','w')
73         for i in xrange(batchSize):
74                 plateStr,plate = G.genPlateString(-1,-1)
75                 print plateStr,plate
76         img =  G.generate(plateStr);
77                 img = cv2.resize(img,size);
78                 cv2.imwrite(outputPath + "/" + str(i).zfill(2) + ".jpg", img);
79         outfile.write(str(plate)+"\n")
80 G = GenPlate("./font/platech.ttf",'./font/platechar.ttf',"./NoPlates")
 

  完整代碼:

[[223827]] View Code

  運(yùn)行時(shí)加生成數(shù)量和保存路徑即可,如:

 1 python genPlate.py 100 ./plate_100 

  顯示結(jié)果:

 

  上圖即為生成的車牌數(shù)據(jù),有清晰的有模糊的,有比較方正的,也有一些比較傾斜,生成完大量的車牌樣張后就可以進(jìn)行車牌識(shí)別了。下一小節(jié)將會(huì)講如何用端對(duì)端的CNN進(jìn)行車牌識(shí)別,不需要通過傳統(tǒng)的ocr先對(duì)字符進(jìn)行分割處理后再識(shí)別。

 

參考資料:

1.原來做的車牌識(shí)別項(xiàng)目:https://github.com/huxiaoman7/mxnet-cnn-plate-recognition 

責(zé)任編輯:張燕妮 來源: www.cnblogs.com
相關(guān)推薦

2018-04-09 10:20:32

深度學(xué)習(xí)

2018-04-02 10:45:11

深度學(xué)習(xí)PaddlePaddl手寫數(shù)字識(shí)別

2018-04-04 10:19:32

深度學(xué)習(xí)

2018-03-26 20:07:25

深度學(xué)習(xí)

2018-04-11 09:30:41

深度學(xué)習(xí)

2018-04-16 11:30:32

深度學(xué)習(xí)

2018-04-17 09:40:22

深度學(xué)習(xí)

2018-03-26 20:00:32

深度學(xué)習(xí)

2018-03-26 21:26:50

深度學(xué)習(xí)

2018-03-26 21:31:30

深度學(xué)習(xí)

2018-04-18 09:39:07

深度學(xué)習(xí)

2018-03-26 19:56:13

深度學(xué)習(xí)

2021-02-03 13:56:09

KerasAPI深度學(xué)習(xí)

2017-10-17 15:44:53

一體機(jī)

2017-08-10 15:31:57

Apache Spar TensorFlow

2018-03-09 22:56:52

PaddlePaddl

2018-02-07 16:13:00

深度學(xué)習(xí)

2017-09-15 18:13:57

機(jī)器學(xué)習(xí)深度學(xué)習(xí)語音識(shí)別

2017-02-09 16:39:54

百度

2018-03-26 20:12:42

深度學(xué)習(xí)
點(diǎn)贊
收藏

51CTO技術(shù)棧公眾號(hào)