自拍偷在线精品自拍偷,亚洲欧美中文日韩v在线观看不卡

常見幾種加密算法的Python實現(xiàn)

開發(fā) 后端 算法
生活中我們經(jīng)常會遇到一些加密算法,今天我們就聊聊這些加密算法的Python實現(xiàn)。部分常用的加密方法基本都有對應的Python庫,基本不再需要我們用代碼實現(xiàn)具體算法。

 生活中我們經(jīng)常會遇到一些加密算法,今天我們就聊聊這些加密算法的Python實現(xiàn)。部分常用的加密方法基本都有對應的Python庫,基本不再需要我們用代碼實現(xiàn)具體算法。

[[325194]]

 

MD5加密

全稱:MD5消息摘要算法(英語:MD5 Message-Digest Algorithm),一種被廣泛使用的密碼散列函數(shù),可以產(chǎn)生出一個128位(16字節(jié))的散列值(hash value),用于確保信息傳輸完整一致。md5加密算法是不可逆的,所以解密一般都是通過暴力窮舉方法,通過網(wǎng)站的接口實現(xiàn)解密。Python代碼:

 

  1. import hashlib 
  2. m = hashlib.md5() 
  3. m.update(str.encode("utf8")) 
  4. print(m.hexdigest()) 

SHA1加密

全稱:安全哈希算法(Secure Hash Algorithm)主要適用于數(shù)字簽名標準(Digital Signature Standard DSS)里面定義的數(shù)字簽名算法(Digital Signature Algorithm DSA),SHA1比MD5的安全性更強。對于長度小于2^ 64位的消息,SHA1會產(chǎn)生一個160位的消息摘要。Python代碼:

 

  1. import hashlib 
  2. sha1 = hashlib.sha1() 
  3. data = '2333333' 
  4. sha1.update(data.encode('utf-8')) 
  5. sha1_data = sha1.hexdigest() 
  6. print(sha1_data) 

HMAC加密

全稱:散列消息鑒別碼(Hash Message Authentication Code), HMAC加密算法是一種安全的基于加密hash函數(shù)和共享密鑰的消息認證協(xié)議。實現(xiàn)原理是用公開函數(shù)和密鑰產(chǎn)生一個固定長度的值作為認證標識,用這個標識鑒別消息的完整性。使用一個密鑰生成一個固定大小的小數(shù)據(jù)塊,即 MAC,并將其加入到消息中,然后傳輸。接收方利用與發(fā)送方共享的密鑰進行鑒別認證等。Python代碼:

 

  1. import hmac 
  2. import hashlib 
  3. # 第一個參數(shù)是密鑰key,第二個參數(shù)是待加密的字符串,第三個參數(shù)是hash函數(shù) 
  4. mac = hmac.new('key','hello',hashlib.md5) 
  5. mac.digest()  # 字符串的ascii格式 
  6. mac.hexdigest()  # 加密后字符串的十六進制格式 

DES加密

全稱:數(shù)據(jù)加密標準(Data Encryption Standard),屬于對稱加密算法。DES是一個分組加密算法,典型的DES以64位為分組對數(shù)據(jù)加密,加密和解密用的是同一個算法。它的密鑰長度是56位(因為每個第8 位都用作奇偶校驗),密鑰可以是任意的56位的數(shù),而且可以任意時候改變。Python代碼:

  1. import binascii 
  2. from pyDes import des, CBC, PAD_PKCS5 
  3. # 需要安裝 pip install pyDes 
  4.  
  5. def des_encrypt(secret_key, s): 
  6.     iv = secret_key 
  7.     k = des(secret_key, CBC, iv, pad=None, padmode=PAD_PKCS5) 
  8.     en = k.encrypt(s, padmode=PAD_PKCS5) 
  9.     return binascii.b2a_hex(en) 
  10.  
  11. def des_decrypt(secret_key, s): 
  12.     iv = secret_key 
  13.     k = des(secret_key, CBC, iv, pad=None, padmode=PAD_PKCS5) 
  14.     de = k.decrypt(binascii.a2b_hex(s), padmode=PAD_PKCS5) 
  15.     return de 
  16.  
  17. secret_str = des_encrypt('12345678''I love YOU~'
  18. print(secret_str) 
  19. clear_str = des_decrypt('12345678', secret_str) 
  20. print(clear_str) 

AES加密

全稱:高級加密標準(英語:Advanced Encryption Standard),在密碼學中又稱Rijndael加密法,是美國聯(lián)邦政府采用的一種區(qū)塊加密標準。這個標準用來替代原先的DES,已經(jīng)被多方分析且廣為全世界所使用。Python代碼:

 

  1. import base64 
  2. from Crypto.Cipher import AES 
  3.  
  4. ''
  5. AES對稱加密算法 
  6. ''
  7. # 需要補位,str不是16的倍數(shù)那就補足為16的倍數(shù) 
  8. def add_to_16(value): 
  9.     while len(value) % 16 != 0: 
  10.         value += '\0' 
  11.     return str.encode(value)  # 返回bytes 
  12. # 加密方法 
  13. def encrypt(key, text): 
  14.     aes = AES.new(add_to_16(key), AES.MODE_ECB)  # 初始化加密器 
  15.     encrypt_aes = aes.encrypt(add_to_16(text))  # 先進行aes加密 
  16.     encrypted_text = str(base64.encodebytes(encrypt_aes), encoding='utf-8')  # 執(zhí)行加密并轉(zhuǎn)碼返回bytes 
  17.     return encrypted_text 
  18. # 解密方法 
  19. def decrypt(key, text): 
  20.     aes = AES.new(add_to_16(key), AES.MODE_ECB)  # 初始化加密器 
  21.     base64_decrypted = base64.decodebytes(text.encode(encoding='utf-8'))  # 優(yōu)先逆向解密base64成bytes 
  22.     decrypted_text = str(aes.decrypt(base64_decrypted), encoding='utf-8').replace('\0''')  # 執(zhí)行解密密并轉(zhuǎn)碼返回str 
  23.     return decrypted_text 

RSA加密

全稱:Rivest-Shamir-Adleman,RSA加密算法是一種非對稱加密算法。在公開密鑰加密和電子商業(yè)中RSA被廣泛使用。它被普遍認為是目前比較優(yōu)秀的公鑰方案之一。RSA是第一個能同時用于加密和數(shù)字簽名的算法,它能夠抵抗到目前為止已知的所有密碼攻擊。Python代碼:

 

  1. # -*- coding: UTF-8 -*- 
  2. # reference codes: https://www.jianshu.com/p/7a4645691c68 
  3.  
  4. import base64 
  5. import rsa 
  6. from rsa import common 
  7.  
  8. # 使用 rsa庫進行RSA簽名和加解密 
  9. class RsaUtil(object): 
  10.     PUBLIC_KEY_PATH = 'xxxxpublic_key.pem'  # 公鑰 
  11.     PRIVATE_KEY_PATH = 'xxxxxprivate_key.pem'  # 私鑰 
  12.  
  13.     # 初始化key 
  14.     def __init__(self, 
  15.                  company_pub_file=PUBLIC_KEY_PATH, 
  16.                  company_pri_file=PRIVATE_KEY_PATH): 
  17.  
  18.         if company_pub_file: 
  19.             self.company_public_key = rsa.PublicKey.load_pkcs1_openssl_pem(open(company_pub_file).read()) 
  20.         if company_pri_file: 
  21.             self.company_private_key = rsa.PrivateKey.load_pkcs1(open(company_pri_file).read()) 
  22.  
  23.     def get_max_length(self, rsa_key, encrypt=True): 
  24.         """加密內(nèi)容過長時 需要分段加密 換算每一段的長度. 
  25.             :param rsa_key: 鑰匙. 
  26.             :param encrypt: 是否是加密. 
  27.         ""
  28.         blocksize = common.byte_size(rsa_key.n) 
  29.         reserve_size = 11  # 預留位為11 
  30.         if not encrypt:  # 解密時不需要考慮預留位 
  31.             reserve_size = 0 
  32.         maxlength = blocksize - reserve_size 
  33.         return maxlength 
  34.  
  35.     # 加密 支付方公鑰 
  36.     def encrypt_by_public_key(self, message): 
  37.         """使用公鑰加密. 
  38.             :param message: 需要加密的內(nèi)容. 
  39.             加密之后需要對接過進行base64轉(zhuǎn)碼 
  40.         ""
  41.         encrypt_result = b'' 
  42.         max_length = self.get_max_length(self.company_public_key) 
  43.         while message: 
  44.             input = message[:max_length] 
  45.             message = message[max_length:] 
  46.             out = rsa.encrypt(input, self.company_public_key) 
  47.             encrypt_result += out 
  48.         encrypt_result = base64.b64encode(encrypt_result) 
  49.         return encrypt_result 
  50.  
  51.     def decrypt_by_private_key(self, message): 
  52.         """使用私鑰解密. 
  53.             :param message: 需要加密的內(nèi)容. 
  54.             解密之后的內(nèi)容直接是字符串,不需要在進行轉(zhuǎn)義 
  55.         ""
  56.         decrypt_result = b"" 
  57.  
  58.         max_length = self.get_max_length(self.company_private_key, False
  59.         decrypt_message = base64.b64decode(message) 
  60.         while decrypt_message: 
  61.             input = decrypt_message[:max_length] 
  62.             decrypt_message = decrypt_message[max_length:] 
  63.             out = rsa.decrypt(input, self.company_private_key) 
  64.             decrypt_result += out 
  65.         return decrypt_result 
  66.  
  67.     # 簽名 商戶私鑰 base64轉(zhuǎn)碼 
  68.     def sign_by_private_key(self, data): 
  69.         """私鑰簽名. 
  70.             :param data: 需要簽名的內(nèi)容. 
  71.             使用SHA-1 方法進行簽名(也可以使用MD5) 
  72.             簽名之后,需要轉(zhuǎn)義后輸出 
  73.         ""
  74.         signature = rsa.sign(str(data), priv_key=self.company_private_key, hash='SHA-1'
  75.         return base64.b64encode(signature) 
  76.  
  77.     def verify_by_public_key(self, message, signature): 
  78.         """公鑰驗簽. 
  79.             :param message: 驗簽的內(nèi)容. 
  80.             :param signature: 對驗簽內(nèi)容簽名的值(簽名之后,會進行b64encode轉(zhuǎn)碼,所以驗簽前也需轉(zhuǎn)碼). 
  81.         ""
  82.         signature = base64.b64decode(signature) 
  83.         return rsa.verify(message, signature, self.company_public_key) 

ECC加密

全稱:橢圓曲線加密(Elliptic Curve Cryptography),ECC加密算法是一種公鑰加密技術(shù),以橢圓曲線理論為基礎(chǔ)。利用有限域上橢圓曲線的點構(gòu)成的Abel群離散對數(shù)難解性,實現(xiàn)加密、解密和數(shù)字簽名。將橢圓曲線中的加法運算與離散對數(shù)中的模乘運算相對應,就可以建立基于橢圓曲線的對應密碼體制。Python代碼:

  1. # -*- coding:utf-8 *- 
  2. # author: DYBOY 
  3. # reference codes: https://blog.dyboy.cn/websecurity/121.html 
  4. # description: ECC橢圓曲線加密算法實現(xiàn) 
  5. ""
  6.     考慮K=kG ,其中K、G為橢圓曲線Ep(a,b)上的點,n為G的階(nG=O∞ ),k為小于n的整數(shù)。 
  7.     則給定k和G,根據(jù)加法法則,計算K很容易但反過來,給定K和G,求k就非常困難。 
  8.     因為實際使用中的ECC原則上把p取得相當大,n也相當大,要把n個解點逐一算出來列成上表是不可能的。 
  9.     這就是橢圓曲線加密算法的數(shù)學依據(jù) 
  10.     點G稱為基點(base point) 
  11.     k(k<n)為私有密鑰(privte key) 
  12.     K為公開密鑰(public key
  13. ""
  14.  
  15. def get_inverse(mu, p): 
  16.     ""
  17.     獲取y的負元 
  18.     ""
  19.     for i in range(1, p): 
  20.         if (i*mu)%p == 1: 
  21.             return i 
  22.     return -1 
  23.  
  24. def get_gcd(zi, mu): 
  25.     ""
  26.     獲取最大公約數(shù) 
  27.     ""
  28.     if mu: 
  29.         return get_gcd(mu, zi%mu) 
  30.     else
  31.         return zi 
  32.  
  33. def get_np(x1, y1, x2, y2, a, p): 
  34.     ""
  35.     獲取n*p,每次+p,直到求解階數(shù)np=-p 
  36.     ""
  37.     flag = 1  # 定義符號位(+/-) 
  38.  
  39.     # 如果 p=q  k=(3x2+a)/2y1mod p 
  40.     if x1 == x2 and y1 == y2: 
  41.         zi = 3 * (x1 ** 2) + a  # 計算分子      【求導】 
  42.         mu = 2 * y1    # 計算分母 
  43.  
  44.     # 若P≠Q,則k=(y2-y1)/(x2-x1) mod p 
  45.     else
  46.         zi = y2 - y1 
  47.         mu = x2 - x1 
  48.         if zi* mu < 0: 
  49.             flag = 0        # 符號0為-(負數(shù)) 
  50.             zi = abs(zi) 
  51.             mu = abs(mu) 
  52.  
  53.     # 將分子和分母化為最簡 
  54.     gcd_value = get_gcd(zi, mu)     # 最大公約數(shù) 
  55.     zi = zi // gcd_value            # 整除 
  56.     mu = mu // gcd_value 
  57.     # 求分母的逆元  逆元: ∀a ∈G ,ョb∈G 使得 ab = ba = e 
  58.     # P(x,y)的負元是 (x,-y mod p)= (x,p-y) ,有P+(-P)= O∞ 
  59.     inverse_value = get_inverse(mu, p) 
  60.     k = (zi * inverse_value) 
  61.  
  62.     if flag == 0:                   # 斜率負數(shù) flag==0 
  63.         k = -k 
  64.     k = k % p 
  65.     # 計算x3,y3 P+Q 
  66.     ""
  67.         x3≡k2-x1-x2(mod p) 
  68.         y3≡k(x1-x3)-y1(mod p) 
  69.     ""
  70.     x3 = (k ** 2 - x1 - x2) % p 
  71.     y3 = (k * (x1 - x3) - y1) % p 
  72.     return x3,y3 
  73.  
  74. def get_rank(x0, y0, a, b, p): 
  75.     ""
  76.     獲取橢圓曲線的階 
  77.     ""
  78.     x1 = x0             #-p的x坐標 
  79.     y1 = (-1*y0)%p      #-p的y坐標 
  80.     tempX = x0 
  81.     tempY = y0 
  82.     n = 1 
  83.     while True
  84.         n += 1 
  85.         # 求p+q的和,得到n*p,直到求出階 
  86.         p_x,p_y = get_np(tempX, tempY, x0, y0, a, p) 
  87.         # 如果 == -p,那么階數(shù)+1,返回 
  88.         if p_x == x1 and p_y == y1: 
  89.             return n+1 
  90.         tempX = p_x 
  91.         tempY = p_y 
  92.  
  93. def get_param(x0, a, b, p): 
  94.     ""
  95.     計算p與-p 
  96.     ""
  97.     y0 = -1 
  98.     for i in range(p): 
  99.         # 滿足取模約束條件,橢圓曲線Ep(a,b),p為質(zhì)數(shù),x,y∈[0,p-1] 
  100.         if i**2%p == (x0**3 + a*x0 + b)%p: 
  101.             y0 = i 
  102.             break 
  103.  
  104.     # 如果y0沒有,返回false 
  105.     if y0 == -1: 
  106.         return False 
  107.  
  108.     # 計算-y(負數(shù)取模) 
  109.     x1 = x0 
  110.     y1 = (-1*y0) % p 
  111.     return x0,y0,x1,y1 
  112.  
  113. def get_graph(a, b, p): 
  114.     ""
  115.     輸出橢圓曲線散點圖 
  116.     ""
  117.     x_y = [] 
  118.     # 初始化二維數(shù)組 
  119.     for i in range(p): 
  120.         x_y.append(['-' for i in range(p)]) 
  121.  
  122.     for i in range(p): 
  123.         val =get_param(i, a, b, p)  # 橢圓曲線上的點 
  124.         if(val != False): 
  125.             x0,y0,x1,y1 = val 
  126.             x_y[x0][y0] = 1 
  127.             x_y[x1][y1] = 1 
  128.  
  129.     print("橢圓曲線的散列圖為:"
  130.     for i in range(p):              # i= 0-> p-1 
  131.         temp = p-1-i        # 倒序 
  132.  
  133.         # 格式化輸出1/2位數(shù),y坐標軸 
  134.         if temp >= 10: 
  135.             print(tempend=" "
  136.         else
  137.             print(tempend="  "
  138.  
  139.         # 輸出具體坐標的值,一行 
  140.         for j in range(p): 
  141.             print(x_y[j][temp], end="  "
  142.         print("")   #換行 
  143.  
  144.     # 輸出 x 坐標軸 
  145.     print("  "end=""
  146.     for i in range(p): 
  147.         if i >=10: 
  148.             print(i, end=" "
  149.         else
  150.             print(i, end="  "
  151.     print('\n'
  152.  
  153. def get_ng(G_x, G_y, key, a, p): 
  154.     ""
  155.     計算nG 
  156.     ""
  157.     temp_x = G_x 
  158.     temp_y = G_y 
  159.     while key != 1: 
  160.         temp_x,temp_y = get_np(temp_x,temp_y, G_x, G_y, a, p) 
  161.         key -= 1 
  162.     return temp_x,temp_y 
  163.  
  164. def ecc_main(): 
  165.     while True
  166.         a = int(input("請輸入橢圓曲線參數(shù)a(a>0)的值:")) 
  167.         b = int(input("請輸入橢圓曲線參數(shù)b(b>0)的值:")) 
  168.         p = int(input("請輸入橢圓曲線參數(shù)p(p為素數(shù))的值:"))   #用作模運算 
  169.  
  170.         # 條件滿足判斷 
  171.         if (4*(a**3)+27*(b**2))%p == 0: 
  172.             print("您輸入的參數(shù)有誤,請重新輸入!??!\n"
  173.         else
  174.             break 
  175.  
  176.     # 輸出橢圓曲線散點圖 
  177.     get_graph(a, b, p) 
  178.  
  179.     # 選點作為G點 
  180.     print("user1:在如上坐標系中選一個值為G的坐標"
  181.     G_x = int(input("user1:請輸入選取的x坐標值:")) 
  182.     G_y = int(input("user1:請輸入選取的y坐標值:")) 
  183.  
  184.     # 獲取橢圓曲線的階 
  185.     n = get_rank(G_x, G_y, a, b, p) 
  186.  
  187.     # user1生成私鑰,小key 
  188.     key = int(input("user1:請輸入私鑰小key(<{}):".format(n))) 
  189.  
  190.     # user1生成公鑰,大KEY 
  191.     KEY_x,kEY_y = get_ng(G_x, G_y, key, a, p) 
  192.  
  193.     # user2階段 
  194.     # user2拿到user1的公鑰KEY,Ep(a,b)階n,加密需要加密的明文數(shù)據(jù) 
  195.     # 加密準備 
  196.     k = int(input("user2:請輸入一個整數(shù)k(<{})用于求kG和kQ:".format(n))) 
  197.     k_G_x,k_G_y = get_ng(G_x, G_y, k, a, p)                         # kG 
  198.     k_Q_x,k_Q_y = get_ng(KEY_x, kEY_y, k, a, p)                     # kQ 
  199.  
  200.     # 加密 
  201.     plain_text = input("user2:請輸入需要加密的字符串:"
  202.     plain_text = plain_text.strip() 
  203.     #plain_text = int(input("user1:請輸入需要加密的密文:")) 
  204.     c = [] 
  205.     print("密文為:",end=""
  206.     for char in plain_text: 
  207.         intchar = ord(char
  208.         cipher_text = intchar*k_Q_x 
  209.         c.append([k_G_x, k_G_y, cipher_text]) 
  210.         print("({},{}),{}".format(k_G_x, k_G_y, cipher_text),end="-"
  211.  
  212.  
  213.     # user1階段 
  214.     # 拿到user2加密的數(shù)據(jù)進行解密 
  215.     # 知道 k_G_x,k_G_y,key情況下,求解k_Q_x,k_Q_y是容易的,然后plain_text = cipher_text/k_Q_x 
  216.     print("\nuser1解密得到明文:",end=""
  217.     for charArr in c: 
  218.         decrypto_text_x,decrypto_text_y = get_ng(charArr[0], charArr[1], key, a, p) 
  219.         print(chr(charArr[2]//decrypto_text_x),end=""
  220.  
  221. if __name__ == "__main__"
  222.     print("*************ECC橢圓曲線加密*************"
  223.     ecc_main() 

本文主要介紹了MD5,SHA-1,HMAC,DES/AES,RSA和ECC這幾種加密算法和python代碼示例。以上,便是今天的內(nèi)容,希望大家喜歡,

責任編輯:華軒 來源: Python亂燉
相關(guān)推薦

2022-06-27 18:54:54

Python爬蟲加密算法

2020-05-09 14:20:11

信息安全加密

2025-03-11 08:10:00

加密數(shù)據(jù)安全數(shù)據(jù)保護

2009-08-13 18:12:11

C#數(shù)據(jù)加密

2023-10-16 19:05:20

2009-08-04 11:08:33

ASP.NET數(shù)據(jù)加密

2019-05-06 09:32:58

加密算法黑客Java

2012-09-13 09:58:38

2021-04-15 09:02:33

Python加密解密

2020-12-16 05:46:58

算法加密算法MD5

2021-11-22 23:20:01

加密算法架構(gòu)

2011-06-22 11:04:25

加密ARM3DES

2011-06-22 14:00:22

2023-08-02 07:27:53

2010-09-09 10:06:56

Zigbee協(xié)議棧加密算法

2023-07-30 17:44:24

CryptoJS加密字符串

2019-04-09 21:10:23

iOS加密框架

2024-12-31 08:00:00

SpringBoot開發(fā)加密

2009-08-21 15:02:31

C#加密算法

2011-08-18 12:12:29

點贊
收藏

51CTO技術(shù)棧公眾號