一篇學(xué)會(huì)Caffeine W-TinyLFU源碼分析
本文轉(zhuǎn)載自微信公眾號「肌肉碼農(nóng)」,作者肌肉碼農(nóng)。轉(zhuǎn)載本文請聯(lián)系肌肉碼農(nóng)公眾號。
Caffeine使用一個(gè)ConcurrencyHashMap來保存所有數(shù)據(jù),那它的過期淘汰策略采用什么方式與數(shù)據(jù)結(jié)構(gòu)呢?其中寫過期是使用writeOrderDeque,這個(gè)比較簡單無需多說,而讀過期相對復(fù)雜很多,使用W-TinyLFU的結(jié)構(gòu)與算法。
網(wǎng)絡(luò)上有很多文章介紹W-TinyLFU結(jié)構(gòu)的,大家可以去查一下,這里主要是從源碼來分析,總的來說它使用了三個(gè)雙端隊(duì)列:accessOrderEdenDeque,accessOrderProbationDeque,accessOrderProtectedDeque,使用雙端隊(duì)列的原因是支持LRU算法比較方便。
accessOrderEdenDeque屬于eden區(qū),緩存1%的數(shù)據(jù),其余的99%緩存在main區(qū)。
accessOrderProbationDeque屬于main區(qū),緩存main內(nèi)數(shù)據(jù)的20%,這部分是屬于冷數(shù)據(jù),即將補(bǔ)淘汰。
accessOrderProtectedDeque屬于main區(qū),緩存main內(nèi)數(shù)據(jù)的80%,這部分是屬于熱數(shù)據(jù),是整個(gè)緩存的主存區(qū)。
我們先看一下淘汰方法入口:
- void evictEntries() {
- if (!evicts()) {
- return;
- }
- //先從edn區(qū)淘汰
- int candidates = evictFromEden();
- //eden淘汰后的數(shù)據(jù)進(jìn)入main區(qū),然后再從main區(qū)淘汰
- evictFromMain(candidates);
- }
accessOrderEdenDeque對應(yīng)W-TinyLFU的W(window),這里保存的是最新寫入數(shù)據(jù)的引用,它使用LRU淘汰,這里面的數(shù)據(jù)主要是應(yīng)對突發(fā)流量的問題,淘汰后的數(shù)據(jù)進(jìn)入accessOrderProbationDeque.代碼如下:
- int evictFromEden() {
- int candidates = 0;
- Node<K, V> node = accessOrderEdenDeque().peek();
- while (edenWeightedSize() > edenMaximum()) {
- // The pending operations will adjust the size to reflect the correct weight
- if (node == null) {
- break;
- }
- Node<K, V> next = node.getNextInAccessOrder();
- if (node.getWeight() != 0) {
- node.makeMainProbation();
- //先從eden區(qū)移除
- accessOrderEdenDeque().remove(node);
- //移除的數(shù)據(jù)加入到main區(qū)的probation隊(duì)列
- accessOrderProbationDeque().add(node);
- candidates++;
- lazySetEdenWeightedSize(edenWeightedSize() - node.getPolicyWeight());
- }
- node = next;
- }
- return candidates;
- }
數(shù)據(jù)進(jìn)入probation隊(duì)列后,繼續(xù)執(zhí)行以下代碼:
- void evictFromMain(int candidates) {
- int victimQueue = PROBATION;
- Node<K, V> victim = accessOrderProbationDeque().peekFirst();
- Node<K, V> candidate = accessOrderProbationDeque().peekLast();
- while (weightedSize() > maximum()) {
- // Stop trying to evict candidates and always prefer the victim
- if (candidates == 0) {
- candidate = null;
- }
- // Try evicting from the protected and eden queues
- if ((candidate == null) && (victim == null)) {
- if (victimQueue == PROBATION) {
- victim = accessOrderProtectedDeque().peekFirst();
- victimQueue = PROTECTED;
- continue;
- } else if (victimQueue == PROTECTED) {
- victim = accessOrderEdenDeque().peekFirst();
- victimQueue = EDEN;
- continue;
- }
- // The pending operations will adjust the size to reflect the correct weight
- break;
- }
- // Skip over entries with zero weight
- if ((victim != null) && (victim.getPolicyWeight() == 0)) {
- victim = victim.getNextInAccessOrder();
- continue;
- } else if ((candidate != null) && (candidate.getPolicyWeight() == 0)) {
- candidate = candidate.getPreviousInAccessOrder();
- candidates--;
- continue;
- }
- // Evict immediately if only one of the entries is present
- if (victim == null) {
- candidates--;
- Node<K, V> evict = candidate;
- candidate = candidate.getPreviousInAccessOrder();
- evictEntry(evict, RemovalCause.SIZE, 0L);
- continue;
- } else if (candidate == null) {
- Node<K, V> evict = victim;
- victim = victim.getNextInAccessOrder();
- evictEntry(evict, RemovalCause.SIZE, 0L);
- continue;
- }
- // Evict immediately if an entry was collected
- K victimKey = victim.getKey();
- K candidateKey = candidate.getKey();
- if (victimKey == null) {
- Node<K, V> evict = victim;
- victim = victim.getNextInAccessOrder();
- evictEntry(evict, RemovalCause.COLLECTED, 0L);
- continue;
- } else if (candidateKey == null) {
- candidates--;
- Node<K, V> evict = candidate;
- candidate = candidate.getPreviousInAccessOrder();
- evictEntry(evict, RemovalCause.COLLECTED, 0L);
- continue;
- }
- // Evict immediately if the candidate's weight exceeds the maximum
- if (candidate.getPolicyWeight() > maximum()) {
- candidates--;
- Node<K, V> evict = candidate;
- candidate = candidate.getPreviousInAccessOrder();
- evictEntry(evict, RemovalCause.SIZE, 0L);
- continue;
- }
- // Evict the entry with the lowest frequency
- candidates--;
- //最核心算法在這里:從probation的頭尾取出兩個(gè)node進(jìn)行比較頻率,頻率更小者將被remove
- if (admit(candidateKey, victimKey)) {
- Node<K, V> evict = victim;
- victim = victim.getNextInAccessOrder();
- evictEntry(evict, RemovalCause.SIZE, 0L);
- candidate = candidate.getPreviousInAccessOrder();
- } else {
- Node<K, V> evict = candidate;
- candidate = candidate.getPreviousInAccessOrder();
- evictEntry(evict, RemovalCause.SIZE, 0L);
- }
- }
- }
上面的代碼邏輯是從probation的頭尾取出兩個(gè)node進(jìn)行比較頻率,頻率更小者將被remove,其中尾部元素就是上一部分從eden中淘汰出來的元素,如果將兩步邏輯合并起來講是這樣的:在eden隊(duì)列通過lru淘汰出來的”候選者“與probation隊(duì)列通過lru淘汰出來的“被驅(qū)逐者“進(jìn)行頻率比較,失敗者將被從cache中真正移除。下面看一下它的比較邏輯admit:
- boolean admit(K candidateKey, K victimKey) {
- int victimFreq = frequencySketch().frequency(victimKey);
- int candidateFreq = frequencySketch().frequency(candidateKey);
- //如果候選者的頻率高就淘汰被驅(qū)逐者
- if (candidateFreq > victimFreq) {
- return true;
- //如果被驅(qū)逐者比候選者的頻率高,并且候選者頻率小于等于5則淘汰者
- } else if (candidateFreq <= 5) {
- // The maximum frequency is 15 and halved to 7 after a reset to age the history. An attack
- // exploits that a hot candidate is rejected in favor of a hot victim. The threshold of a warm
- // candidate reduces the number of random acceptances to minimize the impact on the hit rate.
- return false;
- }
- //隨機(jī)淘汰
- int random = ThreadLocalRandom.current().nextInt();
- return ((random & 127) == 0);
- }
從frequencySketch取出候選者與被驅(qū)逐者的頻率,如果候選者的頻率高就淘汰被驅(qū)逐者,如果被驅(qū)逐者比候選者的頻率高,并且候選者頻率小于等于5則淘汰者,如果前面兩個(gè)條件都不滿足則隨機(jī)淘汰。
整個(gè)過程中你是不是發(fā)現(xiàn)protectedDeque并沒有什么作用,那它是怎么作為主存區(qū)來保存大部分?jǐn)?shù)據(jù)的呢?
- //onAccess方法觸發(fā)該方法
- void reorderProbation(Node<K, V> node) {
- if (!accessOrderProbationDeque().contains(node)) {
- // Ignore stale accesses for an entry that is no longer present
- return;
- } else if (node.getPolicyWeight() > mainProtectedMaximum()) {
- return;
- }
- long mainProtectedWeightedSize = mainProtectedWeightedSize() + node.getPolicyWeight();
- //先從probation中移除
- accessOrderProbationDeque().remove(node);
- //加入到protected中
- accessOrderProtectedDeque().add(node);
- node.makeMainProtected();
- long mainProtectedMaximum = mainProtectedMaximum();
- //從protected中移除
- while (mainProtectedWeightedSize > mainProtectedMaximum) {
- Node<K, V> demoted = accessOrderProtectedDeque().pollFirst();
- if (demoted == null) {
- break;
- }
- demoted.makeMainProbation();
- //加入到probation中
- accessOrderProbationDeque().add(demoted);
- mainProtectedWeightedSize -= node.getPolicyWeight();
- }
- lazySetMainProtectedWeightedSize(mainProtectedWeightedSize);
- }
當(dāng)數(shù)據(jù)被訪問時(shí)并且該數(shù)據(jù)在probation中,這個(gè)數(shù)據(jù)就會(huì)移動(dòng)到protected中去,同時(shí)通過lru從protected中淘汰一個(gè)數(shù)據(jù)進(jìn)入到probation中。
這樣數(shù)據(jù)流轉(zhuǎn)的邏輯全部通了:新數(shù)據(jù)都會(huì)進(jìn)入到eden中,通過lru淘汰到probation,并與probation中通過lru淘汰的數(shù)據(jù)進(jìn)行使用頻率pk,如果勝利了就繼續(xù)留在probation中,如果失敗了就會(huì)被直接淘汰,當(dāng)這條數(shù)據(jù)被訪問了,則移動(dòng)到protected。當(dāng)其它數(shù)據(jù)被訪問了,則它可能會(huì)從protected中通過lru淘汰到probation中。
TinyLFU
傳統(tǒng)LFU一般使用key-value形式來記錄每個(gè)key的頻率,優(yōu)點(diǎn)是數(shù)據(jù)結(jié)構(gòu)非常簡單,并且能跟緩存本身的數(shù)據(jù)結(jié)構(gòu)復(fù)用,增加一個(gè)屬性記錄頻率就行了,它的缺點(diǎn)也比較明顯就是頻率這個(gè)屬性會(huì)占用很大的空間,但如果改用壓縮方式存儲頻率呢? 頻率占用空間肯定可以減少,但會(huì)引出另外一個(gè)問題:怎么從壓縮后的數(shù)據(jù)里獲得對應(yīng)key的頻率呢?
TinyLFU的解決方案是類似位圖的方法,將key取hash值獲得它的位下標(biāo),然后用這個(gè)下標(biāo)來找頻率,但位圖只有0、1兩個(gè)值,那頻率明顯可能會(huì)非常大,這要怎么處理呢? 另外使用位圖需要預(yù)占非常大的空間,這個(gè)問題怎么解決呢?
TinyLFU根據(jù)最大數(shù)據(jù)量設(shè)置生成一個(gè)long數(shù)組,然后將頻率值保存在其中的四個(gè)long的4個(gè)bit位中(4個(gè)bit位不會(huì)大于15),取頻率值時(shí)則取四個(gè)中的最小一個(gè)。
Caffeine認(rèn)為頻率大于15已經(jīng)很高了,是屬于熱數(shù)據(jù),所以它只需要4個(gè)bit位來保存,long有8個(gè)字節(jié)64位,這樣可以保存16個(gè)頻率。取hash值的后左移兩位,然后加上hash四次,這樣可以利用到16個(gè)中的13個(gè),利用率挺高的,或許有更好的算法能將16個(gè)都利用到。
- public void increment(@Nonnull E e) {
- if (isNotInitialized()) {
- return;
- }
- int hash = spread(e.hashCode());
- int start = (hash & 3) << 2;
- // Loop unrolling improves throughput by 5m ops/s
- int index0 = indexOf(hash, 0); //indexOf也是一種hash方法,不過會(huì)通過tableMask來限制范圍
- int index1 = indexOf(hash, 1);
- int index2 = indexOf(hash, 2);
- int index3 = indexOf(hash, 3);
- boolean added = incrementAt(index0, start);
- added |= incrementAt(index1, start + 1);
- added |= incrementAt(index2, start + 2);
- added |= incrementAt(index3, start + 3);
- //當(dāng)數(shù)據(jù)寫入次數(shù)達(dá)到數(shù)據(jù)長度時(shí)就重置
- if (added && (++size == sampleSize)) {
- reset();
- }
- }
給對應(yīng)位置的bit位四位的Int值加1:
- boolean incrementAt(int i, int j) {
- int offset = j << 2;
- long mask = (0xfL << offset);
- //當(dāng)已達(dá)到15時(shí),次數(shù)不再增加
- if ((table[i] & mask) != mask) {
- table[i] += (1L << offset);
- return true;
- }
- return false;
- }
獲得值的方法也是通過四次hash來獲得,然后取最小值:
- public int frequency(@Nonnull E e) {
- if (isNotInitialized()) {
- return 0;
- }
- int hash = spread(e.hashCode());
- int start = (hash & 3) << 2;
- int frequency = Integer.MAX_VALUE;
- //四次hash
- for (int i = 0; i < 4; i++) {
- int index = indexOf(hash, i);
- //獲得bit位四位的Int值
- int count = (int) ((table[index] >>> ((start + i) << 2)) & 0xfL);
- //取最小值
- frequency = Math.min(frequency, count);
- }
- return frequency;
- }
當(dāng)數(shù)據(jù)寫入次數(shù)達(dá)到數(shù)據(jù)長度時(shí)就會(huì)將次數(shù)減半,一些冷數(shù)據(jù)在這個(gè)過程中將歸0,這樣會(huì)使hash沖突降低:
- void reset() {
- int count = 0;
- for (int i = 0; i < table.length; i++) {
- count += Long.bitCount(table[i] & ONE_MASK);
- table[i] = (table[i] >>> 1) & RESET_MASK;
- }
- size = (size >>> 1) - (count >>> 2);
- }