Nacos之隨機(jī)權(quán)重負(fù)載均衡算法
引言
Nacos在Client選擇節(jié)點(diǎn)時(shí)提供了一種基于權(quán)重的隨機(jī)算法,通過源碼分析掌握其實(shí)現(xiàn)原理,方便實(shí)戰(zhàn)中加以運(yùn)用。
一、內(nèi)容提要
下面以圖示的方式貫穿下隨機(jī)權(quán)重負(fù)載均衡算法的流程:
節(jié)點(diǎn)列表
假設(shè)注冊了5個(gè)節(jié)點(diǎn),每個(gè)節(jié)點(diǎn)的權(quán)重如下。
組織遞增數(shù)組
目的在于形成weights數(shù)組,該數(shù)組元素取值[0~1]范圍,元素逐個(gè)遞增,計(jì)算過程如下圖示。另外注意非健康節(jié)點(diǎn)或者權(quán)重小于等于0的不會被選擇。
隨機(jī)算法
通過生成[0~1]范圍的隨機(jī)數(shù),通過二分法查找遞增數(shù)組weights[]接近的index,再從注冊節(jié)點(diǎn)列表中返回節(jié)點(diǎn)。
二、源碼分析
隨機(jī)權(quán)重負(fù)載均衡算法是在NacosNamingService#selectOneHealthyInstance提供,一起走查下。
- @Override
- public Instance selectOneHealthyInstance(String serviceName, String groupName, boolean subscribe)
- throws NacosException {
- return selectOneHealthyInstance(serviceName, groupName, new ArrayList<String>(), subscribe);
- }
- @Override
- public Instance selectOneHealthyInstance(String serviceName, String groupName, List<String> clusters,
- boolean subscribe) throws NacosException {
- String clusterString = StringUtils.join(clusters, ",");
- // 注解@1
- if (subscribe) {
- ServiceInfo serviceInfo = serviceInfoHolder.getServiceInfo(serviceName, groupName, clusterString);
- if (null == serviceInfo) {
- serviceInfo = clientProxy.subscribe(serviceName, groupName, clusterString);
- }
- return Balancer.RandomByWeight.selectHost(serviceInfo);
- } else {
- // 注解@2
- ServiceInfo serviceInfo = clientProxy
- .queryInstancesOfService(serviceName, groupName, clusterString, 0, false);
- return Balancer.RandomByWeight.selectHost(serviceInfo);
- }
- }
注解@1 已訂閱「從緩存獲取注冊節(jié)點(diǎn)列表」,默認(rèn)subscribe為true。
注解@2 從 「從服務(wù)器獲取注冊節(jié)點(diǎn)列表」
- protected static Instance getHostByRandomWeight(List<Instance> hosts) {
- NAMING_LOGGER.debug("entry randomWithWeight");
- if (hosts == null || hosts.size() == 0) {
- NAMING_LOGGER.debug("hosts == null || hosts.size() == 0");
- return null;
- }
- NAMING_LOGGER.debug("new Chooser");
- List<Pair<Instance>> hostsWithWeight = new ArrayList<Pair<Instance>>();
- for (Instance host : hosts) {
- if (host.isHealthy()) { // 注解@3
- hostsWithWeight.add(new Pair<Instance>(host, host.getWeight()));
- }
- }
- NAMING_LOGGER.debug("for (Host host : hosts)");
- Chooser<String, Instance> vipChooser = new Chooser<String, Instance>("www.taobao.com");
- // 注解@4
- vipChooser.refresh(hostsWithWeight);
- NAMING_LOGGER.debug("vipChooser.refresh");
- // 注解@5
- return vipChooser.randomWithWeight();
- }
注解@3 非健康節(jié)點(diǎn)不會被選中,組裝Pair的列表,包含健康節(jié)點(diǎn)的權(quán)重和Host信息
注解@4 刷新需要的數(shù)據(jù),具體包括三部分:所有健康節(jié)點(diǎn)權(quán)重求和、計(jì)算每個(gè)健康節(jié)點(diǎn)權(quán)重占比、組織遞增數(shù)組。
- public void refresh() {
- Double originWeightSum = (double) 0;
- // 注解@4.1
- for (Pair<T> item : itemsWithWeight) {
- double weight = item.weight();
- // ignore item which weight is zero.see test_randomWithWeight_weight0 in ChooserTest
- // weight小于等于 0的將會剔除
- if (weight <= 0) {
- continue;
- }
- items.add(item.item());
- // 值如果無窮大
- if (Double.isInfinite(weight)) {
- weight = 10000.0D;
- }
- // 值如果為非數(shù)字值
- if (Double.isNaN(weight)) {
- weight = 1.0D;
- }
- // 累加權(quán)重總和
- originWeightSum += weight;
- }
- // 注解@4.2
- double[] exactWeights = new double[items.size()];
- int index = 0;
- for (Pair<T> item : itemsWithWeight) {
- double singleWeight = item.weight();
- //ignore item which weight is zero.see test_randomWithWeight_weight0 in ChooserTest
- if (singleWeight <= 0) {
- continue;
- }
- // 每個(gè)節(jié)點(diǎn)權(quán)重的占比
- exactWeights[index++] = singleWeight / originWeightSum;
- }
- // 注解@4.3
- weights = new double[items.size()];
- double randomRange = 0D;
- for (int i = 0; i < index; i++) {
- weights[i] = randomRange + exactWeights[i];
- randomRange += exactWeights[i];
- }
- double doublePrecisionDelta = 0.0001;
- if (index == 0 || (Math.abs(weights[index - 1] - 1) < doublePrecisionDelta)) {
- return;
- }
- throw new IllegalStateException(
- "Cumulative Weight caculate wrong , the sum of probabilities does not equals 1.");
- }
注解@4.1 所有健康節(jié)點(diǎn)權(quán)重求和originWeightSum
注解@4.2 計(jì)算每個(gè)健康節(jié)點(diǎn)權(quán)重占比exactWeights數(shù)組
注解@4.3 組織遞增數(shù)組weights,每個(gè)元素值為數(shù)組前面元素之和
以一個(gè)例子來表示這個(gè)過程,假設(shè)有5個(gè)節(jié)點(diǎn):
- 1.2.3.4 100
- 1.2.3.5 100
- 1.2.3.6 100
- 1.2.3.7 80
- 1.2.3.8 60
步驟一 計(jì)算節(jié)點(diǎn)權(quán)重求和
- originWeightSum = 100 + 100 + 100 + 80 + 60 = 440
步驟二 計(jì)算每個(gè)節(jié)點(diǎn)權(quán)重占比
- exactWeights[0] = 0.2272
- exactWeights[1] = 0.2272
- exactWeights[2] = 0.2272
- exactWeights[3] = 0.1818
- exactWeights[4] = 0.1363
步驟三 組織遞增數(shù)組weights
- weights[0] = 0.2272
- weights[1] = 0.4544
- weights[2] = 0.6816
- weights[3] = 0.8634
- weights[4] = 1
注解@5 隨機(jī)選取一個(gè),邏輯如下:
- public T randomWithWeight() {
- Ref<T> ref = this.ref;
- // 注解@5.1
- double random = ThreadLocalRandom.current().nextDouble(0, 1);
- // 注解@5.2
- int index = Arrays.binarySearch(ref.weights, random);
- // 注解@5.3
- if (index < 0) {
- index = -index - 1;
- } else {
- // 注解@5.4
- return ref.items.get(index);
- }
- // 返回選中的元素
- if (index >= 0 && index < ref.weights.length) {
- if (random < ref.weights[index]) {
- return ref.items.get(index);
- }
- }
- /* This should never happen, but it ensures we will return a correct
- * object in case there is some floating point inequality problem
- * wrt the cumulative probabilities. */
- return ref.items.get(ref.items.size() - 1);
- }
注解@5.1 產(chǎn)生0到1區(qū)間的隨機(jī)數(shù)
注解@5.2 二分法查找數(shù)組中接近的值
注解@5.3 沒有命中返回插入數(shù)組理想索引值
注解@5.4 命中直接返回選中節(jié)點(diǎn)
小結(jié): 一種基于權(quán)重的隨機(jī)算法的實(shí)現(xiàn)過程,扒開看也不復(fù)雜。
本文轉(zhuǎn)載自微信公眾號「瓜農(nóng)老梁」,可以通過以下二維碼關(guān)注。轉(zhuǎn)載本文請聯(lián)系瓜農(nóng)老梁公眾號。