自拍偷在线精品自拍偷,亚洲欧美中文日韩v在线观看不卡

MySQL運行時的可觀測性

數(shù)據(jù)庫 MySQL
這條SQL的運行進度展示,以及各個階段的耗時,和PROFILING的輸出一樣,當(dāng)我們了解一條SQL運行所需要經(jīng)歷的各個階段時,從上面的輸出結(jié)果中也就能估算出該SQL大概還要多久能跑完,決定是否要提前kill它。

1. 說在前面的話

在MySQL里,一條SQL運行時產(chǎn)生多少磁盤I/O,占用多少內(nèi)存,是否有創(chuàng)建臨時表,這些指標(biāo)如果都能觀測到,有助于更快發(fā)現(xiàn)SQL瓶頸,撲滅潛在隱患。

從MySQL 5.7版本開始,performance_schema就默認(rèn)啟用了,并且還增加了sys schema,到了8.0版本又進一步得到增強提升,在SQL運行時就能觀察到很多有用的信息,實現(xiàn)一定程度的可觀測性。

下面舉例說明如何進行觀測,以及主要觀測哪些指標(biāo)。

2. 安裝employees測試庫

安裝MySQL官方提供的employees測試數(shù)據(jù)庫,戳此鏈接(https://dev.mysql.com/doc/index-other.html)下載,解壓縮后開始安裝:

$ mysql -f < employees.sql;

INFO
CREATING DATABASE STRUCTURE
INFO
storage engine: InnoDB
INFO
LOADING departments
INFO
LOADING employees
INFO
LOADING dept_emp
INFO
LOADING dept_manager
INFO
LOADING titles
INFO
LOADING salaries
data_load_time_diff
00:00:37

MySQL還提供了相應(yīng)的使用文檔:https://dev.mysql.com/doc/employee/en/

本次測試采用GreatSQL 8.0.32-24版本,且運行在MGR環(huán)境中:

greatsql> \s
...
Server version:         8.0.32-24 GreatSQL, Release 24, Revision 3714067bc8c
...

greatsql> select MEMBER_ID, MEMBER_ROLE, MEMBER_VERSION from performance_schema.replication_group_members;
+--------------------------------------+-------------+----------------+
| MEMBER_ID                            | MEMBER_ROLE | MEMBER_VERSION |
+--------------------------------------+-------------+----------------+
| 2adec6d2-febb-11ed-baca-d08e7908bcb1 | SECONDARY   | 8.0.32         |
| 2f68fee2-febb-11ed-b51e-d08e7908bcb1 | ARBITRATOR  | 8.0.32         |
| 5e34a5e2-feb6-11ed-b288-d08e7908bcb1 | PRIMARY     | 8.0.32         |
+--------------------------------------+-------------+----------------+

3. 觀測SQL運行狀態(tài)

查看當(dāng)前連接/會話的連接ID、內(nèi)部線程ID:

greatsql> select processlist_id, thread_id from performance_schema.threads where processlist_id = connection_id();
+----------------+-----------+
| processlist_id | thread_id |
+----------------+-----------+
|            110 |       207 |
+----------------+-----------+

查詢得到當(dāng)前的連接ID=110,內(nèi)部線程ID=207。

P.S,由于本文整理過程不是連續(xù)的,所以下面看到的 thread_id 值可能會有好幾個,每次都不同。

3.1 觀測SQL運行時的內(nèi)存消耗

執(zhí)行下面的SQL,查詢所有員工的薪資總額,按員工號分組,并按薪資總額倒序,取前10條記錄:

greatsql> explain select emp_no, sum(salary) as total_salary from salaries group by emp_no order by total_salary desc limit 10\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: salaries
   partitions: NULL
         type: index
possible_keys: PRIMARY
          key: PRIMARY
      key_len: 7
          ref: NULL
         rows: 2838426
     filtered: 100.00
        Extra: Using temporary; Using filesort

看到需要全索引掃描(其實也等同于全表掃描,因為是基于PRIMARY索引),并且還需要生成臨時表,以及額外的filesort。

在正式運行該SQL之前,在另外的窗口中新建一個連接會話,執(zhí)行下面的SQL先觀察該連接/會話當(dāng)前的內(nèi)存分配情況:

greatsql> select * from sys.x$memory_by_thread_by_current_bytes where thread_id = 207\G
*************************** 1. row ***************************
         thread_id: 207
              user: root@localhost
current_count_used: 9
 current_allocated: 26266
 current_avg_alloc: 2918.4444
 current_max_alloc: 16464
   total_allocated: 30311

等到該SQL執(zhí)行完了,再一次查詢內(nèi)存分配情況:

greatsql> select * from sys.x$memory_by_thread_by_current_bytes where thread_id = 207\G
*************************** 1. row ***************************
         thread_id: 207
              user: root@localhost
current_count_used: 13
 current_allocated: 24430
 current_avg_alloc: 1879.2308
 current_max_alloc: 16456
   total_allocated: 95719

我們注意到幾個數(shù)據(jù)的變化情況,用下面表格來展示:

指標(biāo)

運行前

運行后

total_allocated

30311

95719

也就是說,SQL運行時,需要分配的內(nèi)存是:95719 - 30311 = 65408 字節(jié)。

3.2 觀測SQL運行時的其他開銷

通過觀察 performance_schema.status_by_thread 表,可以知道相應(yīng)連接/會話中SQL運行的一些狀態(tài)指標(biāo)。在SQL運行結(jié)束后,執(zhí)行下面的SQL命令即可查看:

greatsql> select * from performance_schema.status_by_thread where thread_id = 207;
...
|       207 | Created_tmp_disk_tables             | 0                        |
|       207 | Created_tmp_tables                  | 0                        |
...
|       207 | Handler_read_first                  | 1                        |
|       207 | Handler_read_key                    | 1                        |
|       207 | Handler_read_last                   | 0                        |
|       207 | Handler_read_next                   | 2844047                  |
|       207 | Handler_read_prev                   | 0                        |
|       207 | Handler_read_rnd                    | 0                        |
|       207 | Handler_read_rnd_next               | 0                        |
|       207 | Handler_rollback                    | 0                        |
|       207 | Handler_savepoint                   | 0                        |
|       207 | Handler_savepoint_rollback          | 0                        |
|       207 | Handler_update                      | 0                        |
|       207 | Handler_write                       | 0                        |
|       207 | Last_query_cost                     | 286802.914893            |
|       207 | Last_query_partial_plans            | 1                        |
...
|       207 | Select_full_join                    | 0                        |
|       207 | Select_full_range_join              | 0                        |
|       207 | Select_range                        | 0                        |
|       207 | Select_range_check                  | 0                        |
|       207 | Select_scan                         | 1                        |
|       207 | Slow_launch_threads                 | 0                        |
|       207 | Slow_queries                        | 1                        |
|       207 | Sort_merge_passes                   | 0                        |
|       207 | Sort_range                          | 0                        |
|       207 | Sort_rows                           | 1                       |
|       207 | Sort_scan                           | 1                        |
...

上面我們只羅列了部分比較重要的狀態(tài)指標(biāo)。從這個結(jié)果也可以佐證slow query log中的結(jié)果,確實沒創(chuàng)建臨時表。

作為參照,查看這條SQL對應(yīng)的slow query log記錄:

# Query_time: 0.585593  Lock_time: 0.000002 Rows_sent: 10  Rows_examined: 2844057 Thread_id: 110 Errno: 0 Killed: 0 Bytes_received: 115 Bytes_sent: 313 Read_first: 1 Read_last: 0 Read_key: 1 Read_next: 2844047 Read_prev: 0 Read_rnd: 0 Read_rnd_next: 0 Sort_merge_passes: 0 Sort_range_count: 0 Sort_rows: 10 Sort_scan_count: 1 Created_tmp_disk_tables: 0 Created_tmp_tables: 0 Start: 2023-07-06T10:06:01.438376+08:00 End: 2023-07-06T10:06:02.023969+08:00 Schema: employees Rows_affected: 0
# Tmp_tables: 0  Tmp_disk_tables: 0  Tmp_table_sizes: 0
# InnoDB_trx_id: 0
# Full_scan: Yes  Full_join: No  Tmp_table: No  Tmp_table_on_disk: No
# Filesort: Yes  Filesort_on_disk: No  Merge_passes: 0
#   InnoDB_IO_r_ops: 0  InnoDB_IO_r_bytes: 0  InnoDB_IO_r_wait: 0.000000
#   InnoDB_rec_lock_wait: 0.000000  InnoDB_queue_wait: 0.000000
#   InnoDB_pages_distinct: 4281
use employees;
SET timestamp=1688609161;
select emp_no, sum(salary) as total_salary from salaries group by emp_no order by total_salary desc limit 10;

可以看到,Created_tmp_disk_tables, Created_tmp_tables, Handler_read_next, Select_full_join, Select_scan, Sort_rows, Sort_scan, 等幾個指標(biāo)的數(shù)值是一樣的。

還可以查看該SQL運行時的I/O latency情況,SQL運行前后兩次查詢對比:

greatsql> select * from sys.io_by_thread_by_latency where thread_id = 207;
+----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+
| user           | total | total_latency | min_latency | avg_latency | max_latency | thread_id | processlist_id |
+----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+
| root@localhost |     7 | 75.39 us      | 5.84 us     | 10.77 us    | 22.12 us    |       207 |            110 |
+----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+

...

greatsql> select * from sys.io_by_thread_by_latency where thread_id = 207;
+----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+
| user           | total | total_latency | min_latency | avg_latency | max_latency | thread_id | processlist_id |
+----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+
| root@localhost |     8 | 85.29 us      | 5.84 us     | 10.66 us    | 22.12 us    |       207 |            110 |
+----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+

可以看到這個SQL運行時的I/O latency是:85.29 - 75.39 = 9.9us。

3.3 觀測SQL運行進度

我們知道,運行完一條SQL后,可以利用PROFLING功能查看它各個階段的耗時,但是在運行時如果也想查看各階段耗時該怎么辦呢?

從MySQL 5.7版本開始,可以通過 performance_schema.events_stages_% 相關(guān)表查看SQL運行過程以及各階段耗時,需要先修改相關(guān)設(shè)置:

# 確認(rèn)是否對所有主機&用戶都啟用
greatsql> SELECT * FROM performance_schema.setup_actors;
+------+------+------+---------+---------+
| HOST | USER | ROLE | ENABLED | HISTORY |
+------+------+------+---------+---------+
| %    | %    | %    | NO      | NO      |
+------+------+------+---------+---------+

# 修改成對所有主機&用戶都啟用
greatsql> UPDATE performance_schema.setup_actors
 SET ENABLED = 'YES', HISTORY = 'YES'
 WHERE HOST = '%' AND USER = '%';
 
# 修改 setup_instruments & setup_consumers 設(shè)置
greatsql> UPDATE performance_schema.setup_consumers
 SET ENABLED = 'YES'
 WHERE NAME LIKE '%events_statements_%';
 
greatsql> UPDATE performance_schema.setup_consumers
 SET ENABLED = 'YES'
 WHERE NAME LIKE '%events_stages_%';

這就實時可以觀測SQL運行過程中的狀態(tài)了。

在SQL運行過程中,從另外的窗口查看該SQL對應(yīng)的 EVENT_ID:

greatsql> SELECT EVENT_ID, TRUNCATE(TIMER_WAIT/1000000000000,6) as Duration, SQL_TEXT        FROM performance_schema.events_statements_history WHERE thread_id = 85 order by event_id desc limit 5;
+----------+----------+-------------------------------------------------------------------------------------------------------------------------------+
| EVENT_ID | Duration | SQL_TEXT                                                                                                                      |
+----------+----------+-------------------------------------------------------------------------------------------------------------------------------+
|   149845 |   0.6420 | select emp_no, sum(salary) as total_salary, sleep(0.000001) from salaries group by emp_no order by total_salary desc limit 10 |
|   149803 |   0.6316 | select emp_no, sum(salary) as total_salary, sleep(0.000001) from salaries group by emp_no order by total_salary desc limit 10 |
|   149782 |   0.6245 | select emp_no, sum(salary) as total_salary, sleep(0.000001) from salaries group by emp_no order by total_salary desc limit 10 |
|   149761 |   0.6361 | select emp_no, sum(salary) as total_salary, sleep(0.000001) from salaries group by emp_no order by total_salary desc limit 10 |
|   149740 |   0.6245 | select emp_no, sum(salary) as total_salary, sleep(0.000001) from salaries group by emp_no order by total_salary desc limit 10 |
+----------+----------+-------------------------------------------------------------------------------------------------------------------------------+

# 再根據(jù) EVENT_ID 值去查詢 events_stages_history_long
greatsql> SELECT thread_id ,event_Id, event_name AS Stage, TRUNCATE(TIMER_WAIT/1000000000000,6) AS Duration  FROM performance_schema.events_stages_history_long WHERE NESTING_EVENT_ID = 149845 order by event_id;
+-----------+----------+------------------------------------------------+----------+
| thread_id | event_Id | Stage                                          | Duration |
+-----------+----------+------------------------------------------------+----------+
|        85 |   149846 | stage/sql/starting                             |   0.0000 |
|        85 |   149847 | stage/sql/Executing hook on transaction begin. |   0.0000 |
|        85 |   149848 | stage/sql/starting                             |   0.0000 |
|        85 |   149849 | stage/sql/checking permissions                 |   0.0000 |
|        85 |   149850 | stage/sql/Opening tables                       |   0.0000 |
|        85 |   149851 | stage/sql/init                                 |   0.0000 |
|        85 |   149852 | stage/sql/System lock                          |   0.0000 |
|        85 |   149854 | stage/sql/optimizing                           |   0.0000 |
|        85 |   149855 | stage/sql/statistics                           |   0.0000 |
|        85 |   149856 | stage/sql/preparing                            |   0.0000 |
|        85 |   149857 | stage/sql/Creating tmp table                   |   0.0000 |
|        85 |   149858 | stage/sql/executing                            |   0.6257 |
|        85 |   149859 | stage/sql/end                                  |   0.0000 |
|        85 |   149860 | stage/sql/query end                            |   0.0000 |
|        85 |   149861 | stage/sql/waiting for handler commit           |   0.0000 |
|        85 |   149862 | stage/sql/closing tables                       |   0.0000 |
|        85 |   149863 | stage/sql/freeing items                        |   0.0000 |
|        85 |   149864 | stage/sql/logging slow query                   |   0.0000 |
|        85 |   149865 | stage/sql/cleaning up                          |   0.0000 |
+-----------+----------+------------------------------------------------+----------+

上面就是這條SQL的運行進度展示,以及各個階段的耗時,和PROFILING的輸出一樣,當(dāng)我們了解一條SQL運行所需要經(jīng)歷的各個階段時,從上面的輸出結(jié)果中也就能估算出該SQL大概還要多久能跑完,決定是否要提前kill它。

如果想要觀察DDL SQL的運行進度,可以參考這篇文章:不用MariaDB/Percona也能查看DDL的進度。

更多的觀測指標(biāo)、維度還有待繼續(xù)挖掘,以后有機會再寫。

另外,也可以利用MySQL Workbench工具,或MySQL Enterprise Monitor,都已集成了很多可觀測性指標(biāo),相當(dāng)不錯的體驗。

責(zé)任編輯:武曉燕 來源: GreatSQL社區(qū)
相關(guān)推薦

2023-05-18 22:44:09

2023-10-26 08:47:30

云原生數(shù)據(jù)采集

2023-10-13 13:40:29

2023-09-20 16:11:32

云原生分布式系統(tǒng)

2024-05-28 09:37:48

2015-07-20 15:44:46

Swift框架MJExtension反射

2023-03-09 08:00:22

2021-11-19 09:40:50

數(shù)據(jù)技術(shù)實踐

2023-07-11 16:47:58

2022-05-16 13:31:22

微服務(wù)架構(gòu)云原生微服務(wù)

2024-03-21 09:15:58

JS運行的JavaScrip

2023-11-01 06:55:05

人工智能可觀測性IT

2023-03-30 16:30:08

可觀測云原生

2022-09-27 21:32:14

Dapr指標(biāo)與日志

2024-01-15 05:55:33

2009-09-24 17:19:06

運行時多態(tài)性

2020-12-07 13:31:43

GoMutex開發(fā)者

2023-12-27 06:51:21

可觀測性系統(tǒng)數(shù)字體驗
點贊
收藏

51CTO技術(shù)棧公眾號