自拍偷在线精品自拍偷,亚洲欧美中文日韩v在线观看不卡

15個(gè)高效的Pandas代碼片段

大數(shù)據(jù) 數(shù)據(jù)分析
Python的Pandas庫是數(shù)據(jù)科學(xué)家必備的基礎(chǔ)工具,在本文中,我們將整理15個(gè)高級Pandas代碼片段,這些代碼片段將幫助你簡化數(shù)據(jù)分析任務(wù),并從數(shù)據(jù)集中提取有價(jià)值的見解。

Python的Pandas庫是數(shù)據(jù)科學(xué)家必備的基礎(chǔ)工具,在本文中,我們將整理15個(gè)高級Pandas代碼片段,這些代碼片段將幫助你簡化數(shù)據(jù)分析任務(wù),并從數(shù)據(jù)集中提取有價(jià)值的見解。

過濾數(shù)據(jù)

import pandas as pd
 
 # Create a DataFrame
 data = {'Name': ['Alice', 'Bob', 'Charlie', 'David'],
        'Age': [25, 30, 35, 40]}
 
 df = pd.DataFrame(data)
 
 # Filter rows where Age is greater than 30
 filtered_df = df[df['Age'] > 30]
 print(filtered_df)

分組和聚合數(shù)據(jù)

# Grouping by a column and calculating the mean
 grouped = df.groupby('Age').mean()
 print(grouped)

處理缺失數(shù)據(jù)

# Check for missing values
 missing_values = df.isnull().sum()
 
 
 # Fill missing values with a specific value
 df['Age'].fillna(0, inplace=True)

將函數(shù)應(yīng)用于列

# Applying a custom function to a column
 df['Age'] = df['Age'].apply(lambda x: x * 2)

連接DataFrames

# Concatenate two DataFrames
 df1 = pd.DataFrame({'A': ['A0', 'A1'], 'B': ['B0', 'B1']})
 df2 = pd.DataFrame({'A': ['A2', 'A3'], 'B': ['B2', 'B3']})
 
 
 result = pd.concat([df1, df2], ignore_index=True)
 print(result)

合并DataFrames

# Merge two DataFrames
 left = pd.DataFrame({'key': ['A', 'B', 'C'], 'value': [1, 2, 3]})
 right = pd.DataFrame({'key': ['B', 'C', 'D'], 'value': [4, 5, 6]})
 
 merged = pd.merge(left, right, notallow='key', how='inner')
 print(merged)

數(shù)據(jù)透視表

# Creating a pivot table
 pivot_table = df.pivot_table(index='Name', columns='Age', values='Value')
 print(pivot_table)

處理日期時(shí)間數(shù)據(jù)

# Converting a column to DateTime
 df['Date'] = pd.to_datetime(df['Date'])

數(shù)據(jù)重塑

# Melting a DataFrame
 melted_df = pd.melt(df, id_vars=['Name'], value_vars=['A', 'B'])
 print(melted_df)

使用分類數(shù)據(jù)類型

# Encoding categorical variables
 df['Category'] = df['Category'].astype('category')
 df['Category'] = df['Category'].cat.codes

數(shù)據(jù)采樣

# Randomly sample rows from a DataFrame
 sampled_df = df.sample(n=2)

計(jì)算累計(jì)和

# Calculating cumulative sum
 df['Cumulative_Sum'] = df['Values'].cumsum()

刪除重復(fù)項(xiàng)

# Removing duplicate rows
 df.drop_duplicates(subset=['Column1', 'Column2'], keep='first', inplace=True)

快捷進(jìn)行onehot編碼

dummy_df = pd.get_dummies(df, columns=['Category'])

導(dǎo)出數(shù)據(jù)

df.to_csv('output.csv', index=False)

為什么要加上導(dǎo)出數(shù)據(jù)呢?,因?yàn)樵趯?dǎo)出數(shù)據(jù)時(shí)一定要加上index=False參數(shù),這樣才不會將pandas的索引導(dǎo)出到csv中。

總結(jié)

這15個(gè)Pandas代碼片段將大大增強(qiáng)您作為數(shù)據(jù)科學(xué)家的數(shù)據(jù)操作和分析能力。將它們整合到的工作流程中,可以提高處理和探索數(shù)據(jù)集的效率和效率。

責(zé)任編輯:華軒 來源: DeepHub IMBA
相關(guān)推薦

2023-09-03 16:46:09

Pandas工具

2023-11-15 18:03:11

Python數(shù)據(jù)分析基本工具

2023-12-04 13:21:00

PandasPython

2014-09-04 09:48:32

jQuery響應(yīng)式

2011-11-23 09:21:43

jQuery

2015-10-08 08:53:46

PHP代碼片段

2023-10-09 14:48:06

2011-07-07 10:35:53

htaccess

2023-10-10 16:16:05

JavaScrip開發(fā)

2023-05-22 15:53:06

JavaScrip代碼素材

2015-11-02 09:25:07

jQuery代碼片段

2011-07-11 10:16:07

JavaScript

2024-05-20 10:00:00

代碼Python編程

2024-06-21 11:02:16

2020-08-16 10:58:20

Pandaspython開發(fā)

2019-04-29 08:31:25

PythonPandas數(shù)據(jù)

2011-07-14 10:07:19

PHP

2023-06-16 16:34:25

JavaScripWeb 開發(fā)

2023-11-03 16:02:00

JavaScript開發(fā)

2023-12-26 14:28:08

JavaScript開發(fā)
點(diǎn)贊
收藏

51CTO技術(shù)棧公眾號