Oracle構造序列的方法分析對比
關于Oracle的序列,相信大家并不陌生,但很多人平時只用到connect by 的方式來構造序列,今天一起來學習更多的構造序列的方法及每個方法的優(yōu)缺點。
Oracle構造序列的方法隨著版本一直在變化。在9i之前的版本,常用的方法是:
- select rownum rn from all_objects where rownum<=xx;
從all_objects等系統(tǒng)視圖中去獲取序列的方式,雖然簡單,但有一個致命的弱點是該視圖的sql非常復雜,嵌套層數很多,一旦應用到真實案例中,極有可能碰到Oracle自身的bug,所以這種方式不考慮,直接pass掉。
2、9i之后,我們用connect by
- select rownum rn from dual connect by rownum<=xx;
3、自從10g開始支持XML后,還可以使用以下方式:
- select rownum rn from xmltable(‘1 to xx’);
接下來我們從序列大小,構造時間等方面對比分析這兩種方式。
1、先看connect by的方法
- lastwinner@lw> select count(*) from (select rownum rn from dual connect by rownum<=power(2,19));
- COUNT(*)
- ———-
- 524288
- 已用時間: 00: 00: 00.20
- lastwinner@lw> select count(*) from (select rownum rn from dual connect by rownum<=power(2,20));
- select count(*) from (select rownum rn from dual connect by rownum<=power(2,20))
- *
- 第 1 行出現錯誤:
- ORA-30009: CONNECT BY 操作內存不足
可見直接用connect by去構造較大的序列時,消耗的資源很多,速度也快不到哪兒去。實際上2^20并不是一個很大的數字,就是1M而已。
但xmltable方式就不會耗這么多資源
- lastwinner@lw> select count(*) from (select rownum rn from xmltable(‘1 to 1048576’));
- COUNT(*)
- ———-
- 1048576
- 已用時間: 00: 00: 00.95
其實除了上述三種辦法,我們還可以使用笛卡爾積來構造序列。如果換成笛卡爾連接的方式,那么構造2^20時,connect by也ok
- lastwinner@lw> with a as (select rownum rn from dual connect by rownum<=power(2,10))
- 2 select count(*) from (select rownum rn from a, a);
- COUNT(*)
- ———-
- 1048576
- 已用時間: 00: 00: 00.09
我們試著將1M加大到1G,在connect by方式下
- lastwinner@lw> with a as (select rownum rn from dual connect by rownum<=power(2,10))
- 2 select count(*) from (select rownum rn from a, a, a);
- COUNT(*)
- ———-
- 1073741824
- 已用時間: 00: 01: 07.37
耗時高達1分鐘還多,再看看xmltable方式,考慮到1M的時候耗時就達到0.95秒,因此這里只測試1/16*1G,即64M的情況
- lastwinner@lw> select count(*) from (select rownum rn from xmltable(‘1 to 67108864’));
- COUNT(*)
- ———-
- 67108864
- 已用時間: 00: 00: 37.00
如果直接構造到1G,那么時間差不多是16*37s這個級別。
但如果通過笛卡爾積+xmltable的方式來構造。
- lastwinner@lw> select count(*) from (select rownum rn from xmltable(‘1 to 67108864’));
- COUNT(*)
- ———-
- 67108864
- 已用時間: 00: 00: 37.00
這時間和connect by的差不多。以上測試,總的可見,在構造較大序列時,笛卡爾積的方式是***的,單純使用connect by會遭遇內存不足,而單獨使用xmltable則會耗費較多的時間。
現在再看看基本用純表連接的方式來構造同樣大小的序列,先來1M的
- lastwinner@lw> with b as (select 1 r from dual union all select 2 from dual),
- 2 c as (select rownum r from b,b,b,b,b,
- 3 b,b,b,b,b,
- 4 b,b,b,b,b,
- 5 b,b,b,b,b)
- 6 select count(*) from c;
- COUNT(*)
- ———-
- 1048576
- 已用時間: 00: 00: 00.33
再來64M的
- lastwinner@lw> ed
- 已寫入 file afiedt.buf
- 1 with b as (select 1 r from dual union all select 2 from dual),
- 2 c as (select rownum r from b,b,b,b,b,
- 3 b,b,b,b,b,
- 4 b,b,b,b,b,
- 5 b,b,b,b,b,
- 6 b,b,b,b,b,b)
- 7* select count(*) from c
- lastwinner@lw> /
- COUNT(*)
- ———-
- 67108864
- 已用時間: 00: 00: 16.62
這個速度并不快,但已經比直接xmltable快了。
其實64M,即64*2^20可以表示為(2^5)^5*2,那我們來改寫一下64M的sql
- lastwinner@lw> with b as (select 1 r from dual union all select 2 from dual),
- 2 c as (select rownum r from b,b,b,b,b),
- 3 d as (select rownum r from c,c,c,c,c,b)
- 4 select count(*) from d;
- COUNT(*)
- ———-
- 67108864
- 已用時間: 00: 00: 04.53
可以看到,從16s到4s,已經快了很多。這個示例告訴我們,中間表c 在提高速度方面起到了很好的作用。
但在構造到1G時,還是要慢一些
- lastwinner@lw> ed
- 已寫入 file afiedt.buf
- 1 with b as (select 1 r from dual union all select 2 from dual),
- 2 c as (select rownum r from b,b,b,b,b),
- 3 d as (select rownum r from c,c,c,c,c,c)
- 4* select count(*) from d
- lastwinner@lw> /
- COUNT(*)
- ———-
- 1073741824
- 已用時間: 00: 01: 11.48
嘗試相對較快的寫法,多一層中間表
- lastwinner@lw> ed
- 已寫入 file afiedt.buf
- 1 with b as (select 1 r from dual union all select 2 from dual),
- 2 c as (select rownum r from b,b,b),
- 3 d as (select rownum r from c,c,c),
- 4 e as (select rownum r from d,d,d,c)
- 5* select count(*) from e
- lastwinner@lw> /
- COUNT(*)
- ———-
- 1073741824
- 已用時間: 00: 01: 06.89
更快一點(思路,32^2=1024, 1G=2^30=(2^5)^6=((2^5)^2)^3 。)
- lastwinner@lw> ed
- 已寫入 file afiedt.buf
- 1 with b as (select 1 r from dual union all select 2 from dual),
- 2 c as (select rownum r from b,b,b,b,b),
- 3 d as (select rownum r from c,c),
- 4 e as (select rownum r from d,d,d)
- 5* select count(*) from e
- lastwinner@lw> /
- COUNT(*)
- ———-
- 1073741824
- 已用時間: 00: 01: 05.21
這時候我們將2^5=32換成直接構造出來的方式
- lastwinner@lw> ed
- 已寫入 file afiedt.buf
- 1 with b as (select rownum r from dual connect by rownum<=power(2,5)),
- 2 c as (select rownum r from b,b),
- 3 d as (select rownum r from c,c,c)
- 4* select count(*) from d
- lastwinner@lw> /
- COUNT(*)
- ———-
- 1073741824
- 已用時間: 00: 01: 05.07
可見所耗費的時間差不多。
由此我們還可以得出,表連接的代價其實也是昂貴的,適當的減少表連接的次數,適當的使用with里的中間表,能有效提高系統(tǒng)性能。
再重復一下剛才構造64M(2^26)的場景
- lastwinner@lw> ed
- 已寫入 file afiedt.buf
- 1 with b as (select 1 r from dual union all select 2 from dual),
- 2 c as (select rownum r from b,b,b,b,b,
- 3 b,b,b,b,b,
- 4 b,b,b,b,b,
- 5 b,b,b,b,b,
- 6 b,b,b,b,b,b)
- 7* select count(*) from c
- lastwinner@lw> /
- COUNT(*)
- ———-
- 67108864
- 已用時間: 00: 00: 16.62
總共25次的表連接,1層嵌套,讓速度非常慢。提高一下(26=4*3*2+2*2),總共8次表連接,3層嵌套。
- lastwinner@lw> ed
- 已寫入 file afiedt.buf
- 1 with b as (select 1 r from dual union all select 2 from dual),
- 2 c as (select rownum r from b,b,b,b),
- 3 d as (select rownum r from c,c,c),
- 4 e as (select rownum r from d,d,b,b)
- 5* select count(*) from e
- lastwinner@lw> /
- COUNT(*)
- ———-
- 67108864
- 已用時間: 00: 00: 04.00
效率提升4倍。要注意在這個案例中并非表連接越少越好,嵌套層數也是需要關注的指標。執(zhí)行計劃有興趣的同學自己去看吧,我就不列了,上例中,系統(tǒng)生成的中間表有3個。
最終結論,構造較大序列時,例如同樣是構造出64M的序列,oracle在處理時,用表連接的方式明顯占優(yōu)。但考慮到書寫的便利性,因此在構造較小序列的時候,比如不超過1K的序列,那么直接用connect by或xmltable的方式就好了。
附:newkid 回復方法,表示更靈活,有興趣的同學可以嘗試:
- create or replace function generator (n pls_integer) return sys.odcinumberlist pipelined is
- m pls_integer := trunc(n / 10);
- r pls_integer := n – 10 * m;
- begin
- for i in 1 .. m loop
- pipe row (null);
- pipe row (null);
- pipe row (null);
- pipe row (null);
- pipe row (null);
- pipe row (null);
- pipe row (null);
- pipe row (null);
- pipe row (null);
- pipe row (null);
- end loop;
- for i in 1 .. r loop
- pipe row (null);
- end loop;
- end;
- /
- alter function generator compile plsql_code_type = native;
- SQL> select count(*) from table(generator(67108864));
- COUNT(*)
- ———-
- 67108864
- Elapsed: 00:00:06.68
- SQL> with b as (select 1 r from dual union all select 2 from dual),
- 2 c as (select rownum r from b,b,b,b),
- 3 d as (select rownum r from c,c,c),
- 4 e as (select rownum r from d,d,b,b)
- 5 select count(*) from e;
- COUNT(*)
- ———-
- 67108864
- Elapsed: 00:00:06.32