自拍偷在线精品自拍偷,亚洲欧美中文日韩v在线观看不卡

遺傳算法的基本概念和實(shí)現(xiàn)(附 Java 實(shí)現(xiàn)案例)

移動(dòng)開發(fā) 后端 算法
基因遺傳算法是一種靈感源于達(dá)爾文自然進(jìn)化理論的啟發(fā)式搜索算法。該算法反映了自然選擇的過(guò)程,即最適者被選定繁殖,并產(chǎn)生下一代。本文簡(jiǎn)要地介紹了遺傳算法的基本概念和實(shí)現(xiàn),希望能為讀者展示啟發(fā)式搜索的魅力。

圖一

如上圖(左)所示,遺傳算法當(dāng)個(gè)體由多條染色體組成,每條染色體由多個(gè)基因組成。上圖(右)展示了染色體分割和組合方式。

自然選擇的概念

自然選擇的過(guò)程從選擇群體中最適應(yīng)環(huán)境的個(gè)體開始。后代繼承了父母的特性,并且這些特性將添加到下一代中。如果父母具有更好的適應(yīng)性,那么它們的后代將更易于存活。迭代地進(jìn)行該自然選擇的過(guò)程,最終,我們將得到由最適應(yīng)環(huán)境的個(gè)體組成的一代。

這一概念可以被應(yīng)用于搜索問(wèn)題中。我們考慮一個(gè)問(wèn)題的諸多解決方案,并從中搜尋出***方案。

遺傳算法含以下五步:

  1. 初始化
  2. 個(gè)體評(píng)價(jià)(計(jì)算適應(yīng)度函數(shù))
  3. 選擇運(yùn)算
  4. 交叉運(yùn)算
  5. 變異運(yùn)算

初始化

該過(guò)程從種群的一組個(gè)體開始,且每一個(gè)體都是待解決問(wèn)題的一個(gè)候選解。

個(gè)體以一組參數(shù)(變量)為特征,這些特征被稱為基因,串聯(lián)這些基因就可以組成染色體(問(wèn)題的解)。

在遺傳算法中,單個(gè)個(gè)體的基因組以字符串的方式呈現(xiàn),通常我們可以使用二進(jìn)制(1 和 0 的字符串)編碼,即一個(gè)二進(jìn)制串代表一條染色體串。因此可以說(shuō)我們將基因串或候選解的特征編碼在染色體中。

種群、染色體和基因

個(gè)體評(píng)價(jià)(計(jì)算適應(yīng)度函數(shù))

個(gè)體評(píng)價(jià)利用適應(yīng)度函數(shù)評(píng)估了該個(gè)體對(duì)環(huán)境的適應(yīng)度(與其它個(gè)體競(jìng)爭(zhēng)的能力)。每一個(gè)體都有適應(yīng)度評(píng)分,個(gè)體被選中進(jìn)行繁殖的可能性取決于其適應(yīng)度評(píng)分。適應(yīng)度函數(shù)值越大,解的質(zhì)量就越高。適應(yīng)度函數(shù)是遺傳算法進(jìn)化的驅(qū)動(dòng)力,也是進(jìn)行自然選擇的唯一標(biāo)準(zhǔn),它的設(shè)計(jì)應(yīng)結(jié)合求解問(wèn)題本身的要求而定。

選擇運(yùn)算

選擇運(yùn)算的目的是選出適應(yīng)性***的個(gè)體,并使它們將基因傳到下一代中?;谄溥m應(yīng)度評(píng)分,我們選擇多對(duì)較優(yōu)個(gè)體(父母)。適應(yīng)度高的個(gè)體更易被選中繁殖,即將較優(yōu)父母的基因傳遞到下一代。

交叉運(yùn)算

交叉運(yùn)算是遺傳算法中最重要的階段。對(duì)每一對(duì)配對(duì)的父母,基因都存在隨機(jī)選中的交叉點(diǎn)。

舉個(gè)例子,下圖的交叉點(diǎn)為 3。

父母間在交叉點(diǎn)之前交換基因,從而產(chǎn)生了后代。

父母間交換基因,然后產(chǎn)生的新后代被添加到種群中。

變異運(yùn)算

在某些形成的新后代中,它們的某些基因可能受到低概率變異因子的作用。這意味著二進(jìn)制位串中的某些位可能會(huì)翻轉(zhuǎn)。

變異運(yùn)算前后

變異運(yùn)算可用于保持種群內(nèi)的多樣性,并防止過(guò)早收斂。

終止

在群體收斂的情況下(群體內(nèi)不產(chǎn)生與前一代差異較大的后代)該算法終止。也就是說(shuō)遺傳算法提供了一組問(wèn)題的解。
案例實(shí)現(xiàn)

種群的規(guī)模恒定。新一代形成時(shí),適應(yīng)度最差的個(gè)體凋亡,為后代留出空間。這些階段的序列被不斷重復(fù),以產(chǎn)生優(yōu)于先前的新一代。

這一迭代過(guò)程的偽代碼:

START
Generate the initial population
Compute fitness
REPEAT
Selection
Crossover
Mutation
Compute fitness
UNTIL population has converged
STOP

Java 中的示例實(shí)現(xiàn)

以下展示的是遺傳算法在 Java 中的示例實(shí)現(xiàn),我們可以隨意調(diào)試和修改這些代碼。給定一組五個(gè)基因,每一個(gè)基因可以保存一個(gè)二進(jìn)制值 0 或 1。這里的適應(yīng)度是基因組中 1 的數(shù)量。如果基因組內(nèi)共有五個(gè) 1,則該個(gè)體適應(yīng)度達(dá)到***值。如果基因組內(nèi)沒(méi)有 1,那么個(gè)體的適應(yīng)度達(dá)到最小值。該遺傳算法希望***化適應(yīng)度,并提供適應(yīng)度達(dá)到***的個(gè)體所組成的群體。注意:本例中,在交叉運(yùn)算與突變運(yùn)算之后,適應(yīng)度***的個(gè)體被新的,適應(yīng)度***的后代所替代。

import java.util.Random;

/**
*
* @author Vijini
*/

//Main class
public class SimpleDemoGA {

Population population = new Population();
Individual fittest;
Individual secondFittest;
int generationCount = 0;

public static void main(String[] args) {

Random rn = new Random();

SimpleDemoGA demo = new SimpleDemoGA();

//Initialize population
demo.population.initializePopulation(10);

//Calculate fitness of each individual
demo.population.calculateFitness();

System.out.println("Generation: " + demo.generationCount + " Fittest: " + demo.population.fittest);

//While population gets an individual with maximum fitness
while (demo.population.fittest < 5) {
++demo.generationCount;

//Do selection
demo.selection();

//Do crossover
demo.crossover();

//Do mutation under a random probability
if (rn.nextInt()%7 < 5) {
demo.mutation();
}

//Add fittest offspring to population
demo.addFittestOffspring();

//Calculate new fitness value
demo.population.calculateFitness();

System.out.println("Generation: " + demo.generationCount + " Fittest: " + demo.population.fittest);
}

System.out.println("\nSolution found in generation " + demo.generationCount);
System.out.println("Fitness: "+demo.population.getFittest().fitness);
System.out.print("Genes: ");
for (int i = 0; i < 5; i++) {
System.out.print(demo.population.getFittest().genes[i]);
}

System.out.println("");

}

//Selection
void selection() {

//Select the most fittest individual
fittest = population.getFittest();

//Select the second most fittest individual
secondFittest = population.getSecondFittest();
}

//Crossover
void crossover() {
Random rn = new Random();

//Select a random crossover point
int crossOverPoint = rn.nextInt(population.individuals[0].geneLength);

//Swap values among parents
for (int i = 0; i < crossOverPoint; i++) {
int temp = fittest.genes[i];
fittest.genes[i] = secondFittest.genes[i];
secondFittest.genes[i] = temp;

}

}

//Mutation
void mutation() {
Random rn = new Random();

//Select a random mutation point
int mutationPoint = rn.nextInt(population.individuals[0].geneLength);

//Flip values at the mutation point
if (fittest.genes[mutationPoint] == 0) {
fittest.genes[mutationPoint] = 1;
} else {
fittest.genes[mutationPoint] = 0;
}

mutationPoint = rn.nextInt(population.individuals[0].geneLength);

if (secondFittest.genes[mutationPoint] == 0) {
secondFittest.genes[mutationPoint] = 1;
} else {
secondFittest.genes[mutationPoint] = 0;
}
}

//Get fittest offspring
Individual getFittestOffspring() {
if (fittest.fitness > secondFittest.fitness) {
return fittest;
}
return secondFittest;
}


//Replace least fittest individual from most fittest offspring
void addFittestOffspring() {

//Update fitness values of offspring
fittest.calcFitness();
secondFittest.calcFitness();

//Get index of least fit individual
int leastFittestIndex = population.getLeastFittestIndex();

//Replace least fittest individual from most fittest offspring
population.individuals[leastFittestIndex] = getFittestOffspring();
}

}


//Individual class
class Individual {

int fitness = 0;
int[] genes = new int[5];
int geneLength = 5;

public Individual() {
Random rn = new Random();

//Set genes randomly for each individual
for (int i = 0; i < genes.length; i++) {
genes[i] = rn.nextInt() % 2;
}

fitness = 0;
}

//Calculate fitness
public void calcFitness() {

fitness = 0;
for (int i = 0; i < 5; i++) {
if (genes[i] == 1) {
++fitness;
}
}
}

}

//Population class
class Population {

int popSize = 10;
Individual[] individuals = new Individual[10];
int fittest = 0;

//Initialize population
public void initializePopulation(int size) {
for (int i = 0; i < individuals.length; i++) {
individuals[i] = new Individual();
}
}

//Get the fittest individual
public Individual getFittest() {
int maxFit = Integer.MIN_VALUE;
for (int i = 0; i < individuals.length; i++) {
if (maxFit <= individuals[i].fitness) {
maxFit = i;
}
}
fittest = individuals[maxFit].fitness;
return individuals[maxFit];
}

//Get the second most fittest individual
public Individual getSecondFittest() {
int maxFit1 = 0;
int maxFit2 = 0;
for (int i = 0; i < individuals.length; i++) {
if (individuals[i].fitness > individuals[maxFit1].fitness) {
maxFit2 = maxFit1;
maxFit1 = i;
} else if (individuals[i].fitness > individuals[maxFit2].fitness) {
maxFit2 = i;
}
}
return individuals[maxFit2];
}

//Get index of least fittest individual
public int getLeastFittestIndex() {
int minFit = 0;
for (int i = 0; i < individuals.length; i++) {
if (minFit >= individuals[i].fitness) {
minFit = i;
}
}
return minFit;
}

//Calculate fitness of each individual
public void calculateFitness() {

for (int i = 0; i < individuals.length; i++) {
individuals[i].calcFitness();
}
getFittest();
}

}
責(zé)任編輯:張子龍 來(lái)源: 機(jī)器之心
相關(guān)推薦

2017-11-16 15:25:54

Go語(yǔ)言算法代碼

2025-01-16 07:10:00

2017-08-21 10:00:23

遺傳算法Python生物學(xué)

2024-07-03 08:00:00

2011-04-01 12:37:19

路由

2010-09-26 16:14:22

JVM實(shí)現(xiàn)機(jī)制JVM

2020-07-16 20:55:19

ElasticSear集群分布式

2020-06-11 08:32:50

Python遺傳算法代碼

2021-03-16 11:30:33

2024-09-12 10:06:21

2017-09-22 15:03:08

Python遺傳算法GAFT框架

2017-08-03 10:05:01

Python遺傳算法GAFT

2009-08-18 10:34:31

Java入門基本概念

2011-03-28 11:05:17

ODBC

2019-12-25 14:35:33

分布式架構(gòu)系統(tǒng)

2020-12-31 05:31:01

數(shù)據(jù)結(jié)構(gòu)算法

2010-08-23 16:58:17

DHCP協(xié)議

2010-07-07 15:17:40

LDAP協(xié)議

2017-05-02 14:45:11

深度學(xué)習(xí)機(jī)器學(xué)習(xí)人工神經(jīng)網(wǎng)絡(luò)

2010-04-19 10:08:46

Oracle視圖
點(diǎn)贊
收藏

51CTO技術(shù)棧公眾號(hào)