一文打盡人工智能和機(jī)器學(xué)習(xí)網(wǎng)絡(luò)資源,反正我已經(jīng)收藏了!
編譯:瀟夜、大餅、蔣寶尚
近日,谷歌剛剛上線的機(jī)器學(xué)習(xí)課程刷屏科技媒體頭條。激動(dòng)過后,多數(shù)AI學(xué)習(xí)者會(huì)陷入焦慮:入坑人工智能,到底要從何入手?
的確,如今學(xué)習(xí)人工智能最大的困難不是找不到資料,更多同學(xué)的痛苦是:網(wǎng)上資源太多了,以至于沒法知道從哪兒開始搜索,也沒法知道搜到什么程度。
為了節(jié)省大家的時(shí)間,我們搜遍網(wǎng)絡(luò)把最好的免費(fèi)資源匯總整理到這篇文章當(dāng)中。這些鏈接夠你學(xué)上很久,而且你看完本文一定會(huì)再次驚嘆:現(xiàn)在網(wǎng)上關(guān)于機(jī)器學(xué)習(xí)、深度學(xué)習(xí)和人工智能的信息真的非常多。
本文羅列了以下幾個(gè)方面的學(xué)習(xí)資源,供大家收藏:知名研究人員、人工智能研究機(jī)構(gòu)、視頻課程、博客、Medium、書籍、YouTube、Quora、Reddit、GitHub、播客、新聞?dòng)嗛啞⒖蒲袝?huì)議、研究論文鏈接、教程以及各種小抄表。
研究人員
許多著名的人工智能研究人員都在網(wǎng)絡(luò)上有很強(qiáng)的影響力。下面我列出了20個(gè)專家,也給出了能夠找到他們?cè)敿?xì)信息的網(wǎng)站。
- Sebastian Thrun:http://robots.stanford.edu
- Yann Lecun:http://yann.lecun.com
- Nando de Freitas:http://www.cs.ubc.ca/~nando/
- Andrew Ng:http://www.andrewng.org
- Daphne Koller:http://ai.stanford.edu/users/koller/
- Adam Coates:http://cs.stanford.edu/~acoates/
- Jürgen Schmidhuber:http://people.idsia.ch/~juergen/
- Geoffrey Hinton:http://www.cs.toronto.edu/~hinton/
- Terry Sejnowski:http://www.salk.edu/scientist/terrence-sejnowski/
- Michael Jordan:https://people.eecs.berkeley.edu/~jordan/
- Peter Norvig:http://norvig.com
- Yoshua Bengio:http://www.iro.umontreal.ca/~bengioy/yoshua_en/
- Ian Goodfellow:http://www.iangoodfellow.com
- Andrej Karpathy:http://karpathy.github.io
- Richard Socher:http://www.socher.org
- Demis Hassabis:http://demishassabis.com
- Christopher Manning:https://nlp.stanford.edu/~manning/
- Fei-Fei Li:http://vision.stanford.edu/people.html
- François Chollet:https://scholar.google.com/citations?user=VfYhf2wAAAAJ&hl=en
- Larry Carin:http://people.ee.duke.edu/~lcarin/
- Dan Jurafsky:https://web.stanford.edu/~jurafsky/
- Oren Etzioni:http://allenai.org/team/orene/
人工智能研究機(jī)構(gòu)
許多研究機(jī)構(gòu)致力于促進(jìn)人工智能的研究與開發(fā)。下面我列出了一些機(jī)構(gòu)的網(wǎng)站。
- OpenAI(推特關(guān)注數(shù)12.7萬):https://openai.com
- DeepMind(推特關(guān)注數(shù)8萬):https://deepmind.com
- Google Research(推特關(guān)注數(shù)110萬):https://research.googleblog.com
- AWS AI(推特關(guān)注數(shù)140萬):https://aws.amazon.com/blogs/ai/
- Facebook AI Research:https://research.fb.com/category/facebook-ai-research-fair/
- Microsoft Research(推特關(guān)注數(shù)34.1萬):https://www.microsoft.com/en-us/research/
- Baidu Research(推特關(guān)注數(shù)1.8萬):http://research.baidu.com
- IntelAI(推特關(guān)注數(shù)2千):https://software.intel.com/en-us/ai-academy
- AI²(推特關(guān)注數(shù)4.6千):http://allenai.org
- Partnership on AI(推特關(guān)注數(shù)5千):https://www.partnershiponai.org
視頻課程
網(wǎng)上也有大量的視頻課程和教程,其中很多都是免費(fèi)的,還有一些付費(fèi)的也很不錯(cuò),但是在這篇文章中我只提供免費(fèi)內(nèi)容的鏈接。下面我列出的這些免費(fèi)課程可以讓你學(xué)上好幾個(gè)月:
- Coursera — Machine Learning (Andrew Ng):https://www.coursera.org/learn/machine-learning#syllabus
- Coursera — Neural Networks for Machine Learning (Geoffrey Hinton):https://www.coursera.org/learn/neural-networks
- Machine Learning (mathematicalmonk):https://www.youtube.com/playlist?list=PLD0F06AA0D2E8FFBA
- Practical Deep Learning For Coders (Jeremy Howard & Rachel Thomas):http://course.fast.ai/start.html
- Stanford CS231n — Convolutional Neural Networks for Visual Recognition (Winter 2016):https://www.youtube.com/watch?v=g-PvXUjD6qg&list=PLlJy-eBtNFt6EuMxFYRiNRS07MCWN5UIA
- 斯坦福CS231n【中字】視頻,大數(shù)據(jù)文摘經(jīng)授權(quán)翻譯:http://study.163.com/course/introduction/1003223001.htm
- Stanford CS224n — Natural Language Processing with Deep Learning (Winter 2017):https://www.youtube.com/playlist?list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7EkRe6
- Oxford Deep NLP 2017 (Phil Blunsom et al.):https://github.com/oxford-cs-deepnlp-2017/lectures
- 牛津Deep NLP【中字】視頻,大數(shù)據(jù)文摘經(jīng)授權(quán)翻譯:http://study.163.com/course/introduction/1004336028.htm
- Reinforcement Learning (David Silver):http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
- Practical Machine Learning Tutorial with Python (sentdex):https://www.youtube.com/watch?list=PLQVvvaa0QuDfKTOs3Keq_kaG2P55YRn5v&v=OGxgnH8y2NM
油管 YouTube
YouTube上有很多頻道或者用戶都經(jīng)常會(huì)發(fā)布一些AI或者機(jī)器學(xué)習(xí)相關(guān)的內(nèi)容,我把這些鏈接按照訂閱數(shù)/觀看數(shù)多少列示在下邊,這樣方便看出來哪個(gè)更受歡迎。
- sendex(22.5萬訂閱,2100萬次觀看):https://www.youtube.com/user/sentdex
- Siraj Raval(14萬訂閱,500萬次觀看):https://www.youtube.com/channel/UCWN3xxRkmTPmbKwht9FuE5A
- Two Minute Papers(6萬訂閱,330萬次觀看):https://www.youtube.com/user/keeroyz
- DeepLearning.TV(4.2萬訂閱,140萬觀看):https://www.youtube.com/channel/UC9OeZkIwhzfv-_Cb7fCikLQ
- Data School(3.7萬訂閱,180萬次觀看):https://www.youtube.com/user/dataschool
- Machine Learning Recipes with Josh Gordon(32.4萬次觀看):https://www.youtube.com/playlist?list=PLOU2XLYxmsIIuiBfYad6rFYQU_jL2ryal
- Artificial Intelligence — Topic(1萬訂閱):https://www.youtube.com/channel/UC9pXDvrYYsHuDkauM2fLllQ
- Allen Institute for Artificial Intelligence (AI2)(1.6千訂閱,6.9萬次觀看):https://www.youtube.com/channel/UCEqgmyWChwvt6MFGGlmUQCQ
- Machine Learning at Berkeley(634訂閱,4.8萬次觀看):https://www.youtube.com/channel/UCXweTmAk9K-Uo9R6SmfGtjg
- Understanding Machine Learning — Shai Ben-David(973訂閱,4.3萬次觀看):https://www.youtube.com/channel/UCR4_akQ1HYMUcDszPQ6jh8Q
- Machine Learning TV(455訂閱,1.1萬次觀看):https://www.youtube.com/channel/UChIaUcs3tho6XhyU6K6KMrw
博客
雖然人工智能和機(jī)器學(xué)習(xí)現(xiàn)在這么火,但是我很驚訝地發(fā)現(xiàn)相關(guān)博主并沒有那么多??赡苁且?yàn)閮?nèi)容比較復(fù)雜,把有意義的部分整理出來需要花很大精力;也有可能是因?yàn)轭愃芉uora這樣的平臺(tái)比較多,專家們回答問題更方便也不需要花太多時(shí)間做詳細(xì)論述。
下面我會(huì)按照推特的關(guān)注數(shù)排序介紹一些博主,他們一直在做人工智能相關(guān)的原創(chuàng)內(nèi)容,而不只是一些新聞?wù)蛘吖静┛汀?/p>
- Andrej Karpathy(推特關(guān)注數(shù)6.9萬):http://karpathy.github.io
- i am trask(推特關(guān)注數(shù)1.4萬):http://iamtrask.github.io
- Christopher Olah(推特關(guān)注數(shù)1.3萬):http://colah.github.io
- Top Bots(推特關(guān)注數(shù)1.1萬):http://www.topbots.com
- WildML(推特關(guān)注數(shù)1萬):http://www.wildml.com
- Distill(推特關(guān)注數(shù)9千):https://distill.pub
- Machine Learning Mastery(推特關(guān)注數(shù)5千):http://machinelearningmastery.com/blog/
- FastML(推特關(guān)注數(shù)5千):http://fastml.com
- Adventures in NI(推特關(guān)注數(shù)5千):https://joanna-bryson.blogspot.de
- Sebastian Ruder(推特關(guān)注數(shù)3千):http://sebastianruder.com
- Unsupervised Methods(推特關(guān)注數(shù)1.7千):http://unsupervisedmethods.com
- Explosion(推特關(guān)注數(shù)1千):https://explosion.ai/blog/
- Tim Dettmers(推特關(guān)注數(shù)1千):http://timdettmers.com
- When trees fall…(推特關(guān)注數(shù)265):http://blog.wtf.sg
- ML@B(推特關(guān)注數(shù)80):https://ml.berkeley.edu/blog/
Medium平臺(tái)上的作者
下面介紹到的是Medium上人工智能相關(guān)的頂級(jí)作者,按照2017年Mediumas的排行榜排序。
- Robbie Allen:https://medium.com/@robbieallen
- Erik P.M. Vermeulen:https://medium.com/@erikpmvermeulen
- Frank Chen:https://medium.com/@withfries2
- azeem:https://medium.com/@azeem
- Sam DeBrule:https://medium.com/@samdebrule
- Derrick Harris:https://medium.com/@derrickharris
- Yitaek Hwang:https://medium.com/@yitaek
- samim:https://medium.com/@samim
- Paul Boutin:https://medium.com/@Paul_Boutin
- Mariya Yao:https://medium.com/@thinkmariya
- Rob May:https://medium.com/@robmay
- Avinash Hindupur:https://medium.com/@hindupuravinash
書籍
市面上有許多關(guān)于機(jī)器學(xué)習(xí)、深度學(xué)習(xí)和自然語(yǔ)言處理等方面的書籍,我只列示了可以直接從網(wǎng)上免費(fèi)獲得或者下載的書籍。
機(jī)器學(xué)習(xí)
- Understanding Machine Learning From Theory to Algorithms:http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf
- Machine Learning Yearning:http://www.mlyearning.org
- A Course in Machine Learning:http://ciml.info
- Machine Learning:https://www.intechopen.com/books/machine_learning
- Neural Networks and Deep Learning:http://neuralnetworksanddeeplearning.com
- Deep Learning Book:http://www.deeplearningbook.org
- Reinforcement Learning: An Introduction:http://incompleteideas.net/sutton/book/the-book-2nd.html
- Reinforcement Learning:https://www.intechopen.com/books/reinforcement_learning
自然語(yǔ)言處理
- Speech and Language Processing (3rd ed. draft):https://web.stanford.edu/~jurafsky/slp3/
- Natural Language Processing with Python:http://www.nltk.org/book/
- An Introduction to Information Retrieval:https://nlp.stanford.edu/IR-book/html/htmledition/irbook.html
數(shù)學(xué)
- Introduction to Statistical Thought:http://people.math.umass.edu/~lavine/Book/book.pdf
- Introduction to Bayesian Statistics:https://www.stat.auckland.ac.nz/~brewer/stats331.pdf
- Introduction to Probability:https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/amsbook.mac.pdf
- Think Stats: Probability and Statistics for Python programmers:http://greenteapress.com/wp/think-stats-2e/
- The Probability and Statistics Cookbook:http://statistics.zone
- Linear Algebra:http://joshua.smcvt.edu/linearalgebra/book.pdf
- Linear Algebra Done Wrong:http://www.math.brown.edu/~treil/papers/LADW/book.pdf
- Linear Algebra, Theory And Applications:https://math.byu.edu/~klkuttle/Linearalgebra.pdf
- Mathematics for Computer Science:https://courses.csail.mit.edu/6.042/spring17/mcs.pdf
- Calculus:https://ocw.mit.edu/ans7870/resources/Strang/Edited/Calculus/Calculus.pdf
- Calculus I for Computer Science and Statistics Students:http://www.math.lmu.de/~philip/publications/lectureNotes/calc1_forInfAndStatStudents.pdf
Quora
Quora已經(jīng)成為人工智能和機(jī)器學(xué)習(xí)的重要資源,許多頂尖的研究人員會(huì)在上面回答問題。下面我列出了一些主要關(guān)于人工智能的話題,如果你想自定義你的Quora喜好,你可以選擇訂閱這些話題。記得去查看每個(gè)話題下的FAQ部分(例如機(jī)器學(xué)習(xí)下常見問題解答),你可以看到Quora社區(qū)里提供的一些常見問題列表。
- 計(jì)算機(jī)科學(xué) (560萬關(guān)注):https://www.quora.com/topic/Computer-Science
- 機(jī)器學(xué)習(xí) (110萬關(guān)注):https://www.quora.com/topic/Machine-Learning
- 人工智能 (63.5萬關(guān)注):https://www.quora.com/topic/Artificial-Intelligence
- 深度學(xué)習(xí) (16.7萬關(guān)注):https://www.quora.com/topic/Deep-Learning
- 自然語(yǔ)言處理 (15.5 萬關(guān)注):https://www.quora.com/topic/Natural-Language-Processing
- 機(jī)器學(xué)習(xí)分類(11.9萬關(guān)注):https://www.quora.com/topic/Classification-machine-learning
- 通用人工智能(8.2萬 關(guān)注):https://www.quora.com/topic/Artificial-General-Intelligence
- 卷積神經(jīng)網(wǎng)絡(luò) (2.5萬關(guān)注):https://www.quora.com/topic/Convolutional-Neural-Networks-1?merged_tid=360493
- 計(jì)算語(yǔ)言學(xué)(2.3萬關(guān)注):https://www.quora.com/topic/Computational-Linguistics
- 循環(huán)神經(jīng)網(wǎng)絡(luò)(1.74萬關(guān)注):https://www.quora.com/topic/Recurrent-Neural-Networks-RNNs
Reddit上的人工智能社區(qū)并沒有Quora上那么活躍,但是還是有一些很不錯(cuò)的話題。相對(duì)于Quora問答的形式,Reddit更適合于用來跟蹤最新的新聞和研究。下面是一些主要關(guān)于人工智能的Reddit話題,按照訂閱人數(shù)排序。
- /r/MachineLearning (11.1萬訂閱):https://www.reddit.com/r/MachineLearning
- /r/robotics/ (4.3萬訂閱):https://www.reddit.com/r/robotics/
- /r/artificial (3.5萬訂閱):https://www.reddit.com/r/artificial/
- /r/datascience (3.4萬訂閱):https://www.reddit.com/r/datascience
- /r/learnmachinelearning (1.1萬訂閱):https://www.reddit.com/r/learnmachinelearning/
- /r/computervision (1.1萬訂閱):https://www.reddit.com/r/computervision
- /r/MLQuestions (8千訂閱):https://www.reddit.com/r/MLQuestions
- /r/LanguageTechnology (7千訂閱):https://www.reddit.com/r/LanguageTechnology
- /r/mlclass (4千訂閱):https://www.reddit.com/r/mlclass
- /r/mlpapers (4千訂閱):https://www.reddit.com/r/mlpapers
Github
人工智能社區(qū)的好處之一是大部分新項(xiàng)目都是開源的,并且能在GitHub上獲取到。同樣如果你想了解使用Python或者Juypter Notebooks來實(shí)現(xiàn)實(shí)例算法,GitHub上也有很多學(xué)習(xí)資源可以幫助到你。以下是一些GitHub項(xiàng)目:
- 機(jī)器學(xué)習(xí)(6千個(gè)項(xiàng)目):https://github.com/search?o=desc&q=topic%3Amachine-learning+&s=stars&type=Repositories&utf8=✓
- 深度學(xué)習(xí)(3千個(gè)項(xiàng)目):https://github.com/search?q=topic%3Adeep-learning&type=Repositories
- Tensorflow (2千個(gè)項(xiàng)目):https://github.com/search?q=topic%3Atensorflow&type=Repositories
- 神經(jīng)網(wǎng)絡(luò)(1千個(gè)項(xiàng)目):https://github.com/search?q=topic%3Aneural-network&type=Repositories
- 自然語(yǔ)言處理(1千個(gè)項(xiàng)目):https://github.com/search?utf8=✓&q=topic%3Anlp&type=Repositories
播客
人工智能相關(guān)的播客數(shù)量在不斷的增加,有些播客關(guān)注最新的新聞,有些關(guān)注教授相關(guān)知識(shí)。
- Concerning AI:https://concerning.ai
- his Week in Machine Learning and AI:https://twimlai.com
- The AI Podcast:https://blogs.nvidia.com/ai-podcast/
- Data Skeptic:http://dataskeptic.com
- Linear Digressions:https://itunes.apple.com/us/podcast/linear-digressions/id941219323
- Partially Derivative:http://partiallyderivative.com
- O’Reilly Data Show:http://radar.oreilly.com/tag/oreilly-data-show-podcast
- Learning Machines 101:http://www.learningmachines101.com
- The Talking Machines:http://www.thetalkingmachines.com
- Artificial Intelligence in Industry:http://techemergence.com
- Machine Learning Guide:http://ocdevel.com/podcasts/machine-learning
新聞?dòng)嗛?/strong>
如果你想追蹤最新的新聞和研究的話,種類漸增的每周新聞是一個(gè)不錯(cuò)的選擇:其中大部分都包含相同的內(nèi)容,所以訂閱兩三個(gè)就足夠。
- The Exponential View:https://www.getrevue.co/profile/azeem
- AI Weekly:http://aiweekly.co
- Deep Hunt:https://deephunt.in
- O’Reilly Artificial Intelligence Newsletter:http://www.oreilly.com/ai/newsletter.html
- Machine Learning Weekly:http://mlweekly.com
- Data Science Weekly Newsletter:https://www.datascienceweekly.org
- Machine Learnings:http://subscribe.machinelearnings.co
- Artificial Intelligence News:http://aiweekly.co
- When trees fall…:https://meetnucleus.com/p/GVBR82UWhWb9
- WildML:https://meetnucleus.com/p/PoZVx95N9RGV
- Inside AI:https://inside.com/technically-sentient
- Kurzweil AI:http://www.kurzweilai.net/create-account
- Import AI:https://jack-clark.net/import-ai/
- The Wild Week in AI:https://www.getrevue.co/profile/wildml
- Deep Learning Weekly:http://www.deeplearningweekly.com
- Data Science Weekly:https://www.datascienceweekly.org
- KDnuggets Newsletter:http://www.kdnuggets.com/news/subscribe.html?qst
科研會(huì)議
隨著人工智能的普及,人工智能相關(guān)的科研會(huì)議數(shù)量也在不斷增加。我只提了幾個(gè)主要的會(huì)議,沒列所有的。(當(dāng)然會(huì)議并不是免費(fèi)的!)
學(xué)術(shù)會(huì)議
- NIPS (Neural Information Processing Systems):https://nips.cc
- ICML (International Conference on Machine Learning):https://2017.icml.cc
- KDD (Knowledge Discovery and Data Mining):http://www.kdd.org
- ICLR (International Conference on Learning Representations):http://www.iclr.cc
- ACL (Association for Computational Linguistics):http://acl2017.org
- EMNLP (Empirical Methods in Natural Language Processing):http://emnlp2017.net
- CVPR (Computer Vision and Pattern Recognition):http://cvpr2017.thecvf.com
- ICCV (International Conference on Computer Vision):http://iccv2017.thecvf.com
專業(yè)會(huì)議
- O’Reilly Artificial Intelligence Conference:https://conferences.oreilly.com/artificial-intelligence/
- Machine Learning Conference (MLConf):http://mlconf.com
- AI Expo (North America, Europe, World):https://www.ai-expo.net
- AI Summit:https://theaisummit.com
- AI Conference:https://aiconference.ticketleap.com/helloworld/
研究論文
你可以在網(wǎng)上瀏覽或者搜索已經(jīng)發(fā)布的學(xué)術(shù)論文。
arXiv.org的主題類別
arXiv 是較早的預(yù)印本庫(kù),也是物理學(xué)及相關(guān)專業(yè)領(lǐng)域中最大的,該數(shù)據(jù)庫(kù)目前已有數(shù)學(xué)、物理學(xué)和計(jì)算機(jī)科學(xué)方面的論文可開放獲取的達(dá)50多萬篇。
- Artificial Intelligence:https://arxiv.org/list/cs.AI/recent
- Learning (Computer Science):https://arxiv.org/list/cs.LG/recent
- Machine Learning (Stats):https://arxiv.org/list/stat.ML/recent
- NLP:https://arxiv.org/list/cs.CL/recent
- Computer Vision:https://arxiv.org/list/cs.CV/recent
Semantic Scholar內(nèi)搜索
Semantic Scholar是由微軟聯(lián)合創(chuàng)始人保羅·艾倫創(chuàng)立的艾倫人工智能研究所推出的學(xué)術(shù)搜索引擎
- Neural Networks (17.9萬條結(jié)果):https://www.semanticscholar.org/search?q=%22neural%20networks%22&sort=relevance&ae=false
- Machine Learning (9.4萬條結(jié)果):https://www.semanticscholar.org/search?q=%22machine%20learning%22&sort=relevance&ae=false
- Natural Language (6.2萬條結(jié)果):https://www.semanticscholar.org/search?q=%22natural%20language%22&sort=relevance&ae=false
- Computer Vision (5.5萬條結(jié)果):https://www.semanticscholar.org/search?q=%22computer%20vision%22&sort=relevance&ae=false
- Deep Learning (2.4萬條結(jié)果):https://www.semanticscholar.org/search?q=%22deep%20learning%22&sort=relevance&ae=false
- Andrej Karpathy開發(fā)的網(wǎng)站:http://www.arxiv-sanity.com/
教程
我另外單獨(dú)有一篇詳細(xì)的文章涵蓋了我發(fā)現(xiàn)的所有的優(yōu)秀教程內(nèi)容:
- 超過150種最佳的機(jī)器學(xué)習(xí)、自然語(yǔ)言處理和Python教程:https://unsupervisedmethods.com/over-150-of-the-best-machine-learning-nlp-and-python-tutorials-ive-found-ffce2939bd7
小抄表
和教程一樣,我同樣單獨(dú)有一篇文章介紹了許多種很有用的小抄表:
- 機(jī)器學(xué)習(xí)、Python和數(shù)學(xué)小抄表:https://unsupervisedmethods.com/cheat-sheet-of-machine-learning-and-python-and-math-cheat-sheets-a4afe4e791b6
通讀完本篇文章,是不是對(duì)于如何查找關(guān)于人工智能領(lǐng)域的資料有了清晰的方向。資料很多,大多都是國(guó)外的網(wǎng)站,所以大家需要科學(xué)上網(wǎng)喲~~~
原文鏈接:
https://unsupervisedmethods.com/my-curated-list-of-ai-and-machine-learning-resources-from-around-the-web-9a97823b8524
【本文是51CTO專欄機(jī)構(gòu)大數(shù)據(jù)文摘的原創(chuàng)譯文,微信公眾號(hào)“大數(shù)據(jù)文摘( id: BigDataDigest)”】