自拍偷在线精品自拍偷,亚洲欧美中文日韩v在线观看不卡

一文打盡人工智能和機(jī)器學(xué)習(xí)網(wǎng)絡(luò)資源,反正我已經(jīng)收藏了!

企業(yè)動(dòng)態(tài)
本文羅列了以下幾個(gè)方面的學(xué)習(xí)資源,供大家收藏:知名研究人員、人工智能研究機(jī)構(gòu)、視頻課程、博客、Medium、書籍、YouTube、Quora、Reddit、GitHub、播客、新聞?dòng)嗛啞⒖蒲袝?huì)議、研究論文鏈接、教程以及各種小抄表。

[[222818]]

編譯:瀟夜、大餅、蔣寶尚

近日,谷歌剛剛上線的機(jī)器學(xué)習(xí)課程刷屏科技媒體頭條。激動(dòng)過后,多數(shù)AI學(xué)習(xí)者會(huì)陷入焦慮:入坑人工智能,到底要從何入手?

的確,如今學(xué)習(xí)人工智能最大的困難不是找不到資料,更多同學(xué)的痛苦是:網(wǎng)上資源太多了,以至于沒法知道從哪兒開始搜索,也沒法知道搜到什么程度。

為了節(jié)省大家的時(shí)間,我們搜遍網(wǎng)絡(luò)把最好的免費(fèi)資源匯總整理到這篇文章當(dāng)中。這些鏈接夠你學(xué)上很久,而且你看完本文一定會(huì)再次驚嘆:現(xiàn)在網(wǎng)上關(guān)于機(jī)器學(xué)習(xí)、深度學(xué)習(xí)和人工智能的信息真的非常多。

本文羅列了以下幾個(gè)方面的學(xué)習(xí)資源,供大家收藏:知名研究人員、人工智能研究機(jī)構(gòu)、視頻課程、博客、Medium、書籍、YouTube、Quora、Reddit、GitHub、播客、新聞?dòng)嗛啞⒖蒲袝?huì)議、研究論文鏈接、教程以及各種小抄表。

研究人員

許多著名的人工智能研究人員都在網(wǎng)絡(luò)上有很強(qiáng)的影響力。下面我列出了20個(gè)專家,也給出了能夠找到他們?cè)敿?xì)信息的網(wǎng)站。

人工智能研究機(jī)構(gòu)

[[222819]]

許多研究機(jī)構(gòu)致力于促進(jìn)人工智能的研究與開發(fā)。下面我列出了一些機(jī)構(gòu)的網(wǎng)站。

  • OpenAI(推特關(guān)注數(shù)12.7萬):https://openai.com
  • DeepMind(推特關(guān)注數(shù)8萬):https://deepmind.com
  • Google Research(推特關(guān)注數(shù)110萬):https://research.googleblog.com
  • AWS AI(推特關(guān)注數(shù)140萬):https://aws.amazon.com/blogs/ai/
  • Facebook AI Research:https://research.fb.com/category/facebook-ai-research-fair/
  • Microsoft Research(推特關(guān)注數(shù)34.1萬):https://www.microsoft.com/en-us/research/
  • Baidu Research(推特關(guān)注數(shù)1.8萬):http://research.baidu.com
  • IntelAI(推特關(guān)注數(shù)2千):https://software.intel.com/en-us/ai-academy
  • AI²(推特關(guān)注數(shù)4.6千):http://allenai.org
  • Partnership on AI(推特關(guān)注數(shù)5千):https://www.partnershiponai.org

視頻課程

網(wǎng)上也有大量的視頻課程和教程,其中很多都是免費(fèi)的,還有一些付費(fèi)的也很不錯(cuò),但是在這篇文章中我只提供免費(fèi)內(nèi)容的鏈接。下面我列出的這些免費(fèi)課程可以讓你學(xué)上好幾個(gè)月:

  • Coursera — Machine Learning (Andrew Ng):https://www.coursera.org/learn/machine-learning#syllabus
  • Coursera — Neural Networks for Machine Learning (Geoffrey Hinton):https://www.coursera.org/learn/neural-networks
  • Machine Learning (mathematicalmonk):https://www.youtube.com/playlist?list=PLD0F06AA0D2E8FFBA
  • Practical Deep Learning For Coders (Jeremy Howard & Rachel Thomas):http://course.fast.ai/start.html
  • Stanford CS231n — Convolutional Neural Networks for Visual Recognition (Winter 2016):https://www.youtube.com/watch?v=g-PvXUjD6qg&list=PLlJy-eBtNFt6EuMxFYRiNRS07MCWN5UIA
  • 斯坦福CS231n【中字】視頻,大數(shù)據(jù)文摘經(jīng)授權(quán)翻譯:http://study.163.com/course/introduction/1003223001.htm
  • Stanford CS224n — Natural Language Processing with Deep Learning (Winter 2017):https://www.youtube.com/playlist?list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7EkRe6
  • Oxford Deep NLP 2017 (Phil Blunsom et al.):https://github.com/oxford-cs-deepnlp-2017/lectures
  • 牛津Deep NLP【中字】視頻,大數(shù)據(jù)文摘經(jīng)授權(quán)翻譯:http://study.163.com/course/introduction/1004336028.htm
  • Reinforcement Learning (David Silver):http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
  • Practical Machine Learning Tutorial with Python (sentdex):https://www.youtube.com/watch?list=PLQVvvaa0QuDfKTOs3Keq_kaG2P55YRn5v&v=OGxgnH8y2NM

油管 YouTube

[[222820]]

YouTube上有很多頻道或者用戶都經(jīng)常會(huì)發(fā)布一些AI或者機(jī)器學(xué)習(xí)相關(guān)的內(nèi)容,我把這些鏈接按照訂閱數(shù)/觀看數(shù)多少列示在下邊,這樣方便看出來哪個(gè)更受歡迎。

  • sendex(22.5萬訂閱,2100萬次觀看):https://www.youtube.com/user/sentdex
  • Siraj Raval(14萬訂閱,500萬次觀看):https://www.youtube.com/channel/UCWN3xxRkmTPmbKwht9FuE5A
  • Two Minute Papers(6萬訂閱,330萬次觀看):https://www.youtube.com/user/keeroyz
  • DeepLearning.TV(4.2萬訂閱,140萬觀看):https://www.youtube.com/channel/UC9OeZkIwhzfv-_Cb7fCikLQ
  • Data School(3.7萬訂閱,180萬次觀看):https://www.youtube.com/user/dataschool
  • Machine Learning Recipes with Josh Gordon(32.4萬次觀看):https://www.youtube.com/playlist?list=PLOU2XLYxmsIIuiBfYad6rFYQU_jL2ryal
  • Artificial Intelligence — Topic(1萬訂閱):https://www.youtube.com/channel/UC9pXDvrYYsHuDkauM2fLllQ
  • Allen Institute for Artificial Intelligence (AI2)(1.6千訂閱,6.9萬次觀看):https://www.youtube.com/channel/UCEqgmyWChwvt6MFGGlmUQCQ
  • Machine Learning at Berkeley(634訂閱,4.8萬次觀看):https://www.youtube.com/channel/UCXweTmAk9K-Uo9R6SmfGtjg
  • Understanding Machine Learning — Shai Ben-David(973訂閱,4.3萬次觀看):https://www.youtube.com/channel/UCR4_akQ1HYMUcDszPQ6jh8Q
  • Machine Learning TV(455訂閱,1.1萬次觀看):https://www.youtube.com/channel/UChIaUcs3tho6XhyU6K6KMrw

博客

博客

雖然人工智能和機(jī)器學(xué)習(xí)現(xiàn)在這么火,但是我很驚訝地發(fā)現(xiàn)相關(guān)博主并沒有那么多??赡苁且?yàn)閮?nèi)容比較復(fù)雜,把有意義的部分整理出來需要花很大精力;也有可能是因?yàn)轭愃芉uora這樣的平臺(tái)比較多,專家們回答問題更方便也不需要花太多時(shí)間做詳細(xì)論述。

下面我會(huì)按照推特的關(guān)注數(shù)排序介紹一些博主,他們一直在做人工智能相關(guān)的原創(chuàng)內(nèi)容,而不只是一些新聞?wù)蛘吖静┛汀?/p>

  • Andrej Karpathy(推特關(guān)注數(shù)6.9萬):http://karpathy.github.io
  • i am trask(推特關(guān)注數(shù)1.4萬):http://iamtrask.github.io
  • Christopher Olah(推特關(guān)注數(shù)1.3萬):http://colah.github.io
  • Top Bots(推特關(guān)注數(shù)1.1萬):http://www.topbots.com
  • WildML(推特關(guān)注數(shù)1萬):http://www.wildml.com
  • Distill(推特關(guān)注數(shù)9千):https://distill.pub
  • Machine Learning Mastery(推特關(guān)注數(shù)5千):http://machinelearningmastery.com/blog/
  • FastML(推特關(guān)注數(shù)5千):http://fastml.com
  • Adventures in NI(推特關(guān)注數(shù)5千):https://joanna-bryson.blogspot.de
  • Sebastian Ruder(推特關(guān)注數(shù)3千):http://sebastianruder.com
  • Unsupervised Methods(推特關(guān)注數(shù)1.7千):http://unsupervisedmethods.com
  • Explosion(推特關(guān)注數(shù)1千):https://explosion.ai/blog/
  • Tim Dettmers(推特關(guān)注數(shù)1千):http://timdettmers.com
  • When trees fall…(推特關(guān)注數(shù)265):http://blog.wtf.sg
  • ML@B(推特關(guān)注數(shù)80):https://ml.berkeley.edu/blog/

Medium平臺(tái)上的作者

[[222821]]

下面介紹到的是Medium上人工智能相關(guān)的頂級(jí)作者,按照2017年Mediumas的排行榜排序。

  • Robbie Allen:https://medium.com/@robbieallen
  • Erik P.M. Vermeulen:https://medium.com/@erikpmvermeulen
  • Frank Chen:https://medium.com/@withfries2
  • azeem:https://medium.com/@azeem
  • Sam DeBrule:https://medium.com/@samdebrule
  • Derrick Harris:https://medium.com/@derrickharris
  • Yitaek Hwang:https://medium.com/@yitaek
  • samim:https://medium.com/@samim
  • Paul Boutin:https://medium.com/@Paul_Boutin
  • Mariya Yao:https://medium.com/@thinkmariya
  • Rob May:https://medium.com/@robmay
  • Avinash Hindupur:https://medium.com/@hindupuravinash

書籍

[[222822]]

市面上有許多關(guān)于機(jī)器學(xué)習(xí)、深度學(xué)習(xí)和自然語(yǔ)言處理等方面的書籍,我只列示了可以直接從網(wǎng)上免費(fèi)獲得或者下載的書籍。

機(jī)器學(xué)習(xí)

  • Understanding Machine Learning From Theory to Algorithms:http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf
  • Machine Learning Yearning:http://www.mlyearning.org
  • A Course in Machine Learning:http://ciml.info
  • Machine Learning:https://www.intechopen.com/books/machine_learning
  • Neural Networks and Deep Learning:http://neuralnetworksanddeeplearning.com
  • Deep Learning Book:http://www.deeplearningbook.org
  • Reinforcement Learning: An Introduction:http://incompleteideas.net/sutton/book/the-book-2nd.html
  • Reinforcement Learning:https://www.intechopen.com/books/reinforcement_learning

自然語(yǔ)言處理

  • Speech and Language Processing (3rd ed. draft):https://web.stanford.edu/~jurafsky/slp3/
  • Natural Language Processing with Python:http://www.nltk.org/book/
  • An Introduction to Information Retrieval:https://nlp.stanford.edu/IR-book/html/htmledition/irbook.html

數(shù)學(xué)

  • Introduction to Statistical Thought:http://people.math.umass.edu/~lavine/Book/book.pdf
  • Introduction to Bayesian Statistics:https://www.stat.auckland.ac.nz/~brewer/stats331.pdf
  • Introduction to Probability:https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/amsbook.mac.pdf
  • Think Stats: Probability and Statistics for Python programmers:http://greenteapress.com/wp/think-stats-2e/
  • The Probability and Statistics Cookbook:http://statistics.zone
  • Linear Algebra:http://joshua.smcvt.edu/linearalgebra/book.pdf
  • Linear Algebra Done Wrong:http://www.math.brown.edu/~treil/papers/LADW/book.pdf
  • Linear Algebra, Theory And Applications:https://math.byu.edu/~klkuttle/Linearalgebra.pdf
  • Mathematics for Computer Science:https://courses.csail.mit.edu/6.042/spring17/mcs.pdf
  • Calculus:https://ocw.mit.edu/ans7870/resources/Strang/Edited/Calculus/Calculus.pdf
  • Calculus I for Computer Science and Statistics Students:http://www.math.lmu.de/~philip/publications/lectureNotes/calc1_forInfAndStatStudents.pdf

Quora

Quora

Quora已經(jīng)成為人工智能和機(jī)器學(xué)習(xí)的重要資源,許多頂尖的研究人員會(huì)在上面回答問題。下面我列出了一些主要關(guān)于人工智能的話題,如果你想自定義你的Quora喜好,你可以選擇訂閱這些話題。記得去查看每個(gè)話題下的FAQ部分(例如機(jī)器學(xué)習(xí)下常見問題解答),你可以看到Quora社區(qū)里提供的一些常見問題列表。

  • 計(jì)算機(jī)科學(xué) (560萬關(guān)注):https://www.quora.com/topic/Computer-Science
  • 機(jī)器學(xué)習(xí) (110萬關(guān)注):https://www.quora.com/topic/Machine-Learning
  • 人工智能 (63.5萬關(guān)注):https://www.quora.com/topic/Artificial-Intelligence
  • 深度學(xué)習(xí) (16.7萬關(guān)注):https://www.quora.com/topic/Deep-Learning
  • 自然語(yǔ)言處理 (15.5 萬關(guān)注):https://www.quora.com/topic/Natural-Language-Processing
  • 機(jī)器學(xué)習(xí)分類(11.9萬關(guān)注):https://www.quora.com/topic/Classification-machine-learning
  • 通用人工智能(8.2萬 關(guān)注):https://www.quora.com/topic/Artificial-General-Intelligence
  • 卷積神經(jīng)網(wǎng)絡(luò) (2.5萬關(guān)注):https://www.quora.com/topic/Convolutional-Neural-Networks-1?merged_tid=360493
  • 計(jì)算語(yǔ)言學(xué)(2.3萬關(guān)注):https://www.quora.com/topic/Computational-Linguistics
  • 循環(huán)神經(jīng)網(wǎng)絡(luò)(1.74萬關(guān)注):https://www.quora.com/topic/Recurrent-Neural-Networks-RNNs

Reddit

[[222823]]

Reddit上的人工智能社區(qū)并沒有Quora上那么活躍,但是還是有一些很不錯(cuò)的話題。相對(duì)于Quora問答的形式,Reddit更適合于用來跟蹤最新的新聞和研究。下面是一些主要關(guān)于人工智能的Reddit話題,按照訂閱人數(shù)排序。

  • /r/MachineLearning (11.1萬訂閱):https://www.reddit.com/r/MachineLearning
  • /r/robotics/ (4.3萬訂閱):https://www.reddit.com/r/robotics/
  • /r/artificial (3.5萬訂閱):https://www.reddit.com/r/artificial/
  • /r/datascience (3.4萬訂閱):https://www.reddit.com/r/datascience
  • /r/learnmachinelearning (1.1萬訂閱):https://www.reddit.com/r/learnmachinelearning/
  • /r/computervision (1.1萬訂閱):https://www.reddit.com/r/computervision
  • /r/MLQuestions (8千訂閱):https://www.reddit.com/r/MLQuestions
  • /r/LanguageTechnology (7千訂閱):https://www.reddit.com/r/LanguageTechnology
  • /r/mlclass (4千訂閱):https://www.reddit.com/r/mlclass
  • /r/mlpapers (4千訂閱):https://www.reddit.com/r/mlpapers

Github

Github

人工智能社區(qū)的好處之一是大部分新項(xiàng)目都是開源的,并且能在GitHub上獲取到。同樣如果你想了解使用Python或者Juypter Notebooks來實(shí)現(xiàn)實(shí)例算法,GitHub上也有很多學(xué)習(xí)資源可以幫助到你。以下是一些GitHub項(xiàng)目:

  • 機(jī)器學(xué)習(xí)(6千個(gè)項(xiàng)目):https://github.com/search?o=desc&q=topic%3Amachine-learning+&s=stars&type=Repositories&utf8=✓
  • 深度學(xué)習(xí)(3千個(gè)項(xiàng)目):https://github.com/search?q=topic%3Adeep-learning&type=Repositories
  • Tensorflow (2千個(gè)項(xiàng)目):https://github.com/search?q=topic%3Atensorflow&type=Repositories
  • 神經(jīng)網(wǎng)絡(luò)(1千個(gè)項(xiàng)目):https://github.com/search?q=topic%3Aneural-network&type=Repositories
  • 自然語(yǔ)言處理(1千個(gè)項(xiàng)目):https://github.com/search?utf8=✓&q=topic%3Anlp&type=Repositories

播客

[[222824]]

人工智能相關(guān)的播客數(shù)量在不斷的增加,有些播客關(guān)注最新的新聞,有些關(guān)注教授相關(guān)知識(shí)。

  • Concerning AI:https://concerning.ai
  • his Week in Machine Learning and AI:https://twimlai.com
  • The AI Podcast:https://blogs.nvidia.com/ai-podcast/
  • Data Skeptic:http://dataskeptic.com
  • Linear Digressions:https://itunes.apple.com/us/podcast/linear-digressions/id941219323
  • Partially Derivative:http://partiallyderivative.com
  • O’Reilly Data Show:http://radar.oreilly.com/tag/oreilly-data-show-podcast
  • Learning Machines 101:http://www.learningmachines101.com
  • The Talking Machines:http://www.thetalkingmachines.com
  • Artificial Intelligence in Industry:http://techemergence.com
  • Machine Learning Guide:http://ocdevel.com/podcasts/machine-learning

新聞?dòng)嗛?/strong>

[[222825]]

如果你想追蹤最新的新聞和研究的話,種類漸增的每周新聞是一個(gè)不錯(cuò)的選擇:其中大部分都包含相同的內(nèi)容,所以訂閱兩三個(gè)就足夠。

  • The Exponential View:https://www.getrevue.co/profile/azeem
  • AI Weekly:http://aiweekly.co
  • Deep Hunt:https://deephunt.in
  • O’Reilly Artificial Intelligence Newsletter:http://www.oreilly.com/ai/newsletter.html
  • Machine Learning Weekly:http://mlweekly.com
  • Data Science Weekly Newsletter:https://www.datascienceweekly.org
  • Machine Learnings:http://subscribe.machinelearnings.co
  • Artificial Intelligence News:http://aiweekly.co
  • When trees fall…:https://meetnucleus.com/p/GVBR82UWhWb9
  • WildML:https://meetnucleus.com/p/PoZVx95N9RGV
  • Inside AI:https://inside.com/technically-sentient
  • Kurzweil AI:http://www.kurzweilai.net/create-account
  • Import AI:https://jack-clark.net/import-ai/
  • The Wild Week in AI:https://www.getrevue.co/profile/wildml
  • Deep Learning Weekly:http://www.deeplearningweekly.com
  • Data Science Weekly:https://www.datascienceweekly.org
  • KDnuggets Newsletter:http://www.kdnuggets.com/news/subscribe.html?qst

科研會(huì)議

[[222826]]

隨著人工智能的普及,人工智能相關(guān)的科研會(huì)議數(shù)量也在不斷增加。我只提了幾個(gè)主要的會(huì)議,沒列所有的。(當(dāng)然會(huì)議并不是免費(fèi)的!)

學(xué)術(shù)會(huì)議

  • NIPS (Neural Information Processing Systems):https://nips.cc
  • ICML (International Conference on Machine Learning):https://2017.icml.cc
  • KDD (Knowledge Discovery and Data Mining):http://www.kdd.org
  • ICLR (International Conference on Learning Representations):http://www.iclr.cc
  • ACL (Association for Computational Linguistics):http://acl2017.org
  • EMNLP (Empirical Methods in Natural Language Processing):http://emnlp2017.net
  • CVPR (Computer Vision and Pattern Recognition):http://cvpr2017.thecvf.com
  • ICCV (International Conference on Computer Vision):http://iccv2017.thecvf.com

專業(yè)會(huì)議

  • O’Reilly Artificial Intelligence Conference:https://conferences.oreilly.com/artificial-intelligence/
  • Machine Learning Conference (MLConf):http://mlconf.com
  • AI Expo (North America, Europe, World):https://www.ai-expo.net
  • AI Summit:https://theaisummit.com
  • AI Conference:https://aiconference.ticketleap.com/helloworld/

研究論文

[[222827]]

你可以在網(wǎng)上瀏覽或者搜索已經(jīng)發(fā)布的學(xué)術(shù)論文。

arXiv.org的主題類別

arXiv 是較早的預(yù)印本庫(kù),也是物理學(xué)及相關(guān)專業(yè)領(lǐng)域中最大的,該數(shù)據(jù)庫(kù)目前已有數(shù)學(xué)、物理學(xué)和計(jì)算機(jī)科學(xué)方面的論文可開放獲取的達(dá)50多萬篇。

  • Artificial Intelligence:https://arxiv.org/list/cs.AI/recent
  • Learning (Computer Science):https://arxiv.org/list/cs.LG/recent
  • Machine Learning (Stats):https://arxiv.org/list/stat.ML/recent
  • NLP:https://arxiv.org/list/cs.CL/recent
  • Computer Vision:https://arxiv.org/list/cs.CV/recent

Semantic Scholar內(nèi)搜索

Semantic Scholar是由微軟聯(lián)合創(chuàng)始人保羅·艾倫創(chuàng)立的艾倫人工智能研究所推出的學(xué)術(shù)搜索引擎

  • Neural Networks (17.9萬條結(jié)果):https://www.semanticscholar.org/search?q=%22neural%20networks%22&sort=relevance&ae=false
  • Machine Learning (9.4萬條結(jié)果):https://www.semanticscholar.org/search?q=%22machine%20learning%22&sort=relevance&ae=false
  • Natural Language (6.2萬條結(jié)果):https://www.semanticscholar.org/search?q=%22natural%20language%22&sort=relevance&ae=false
  • Computer Vision (5.5萬條結(jié)果):https://www.semanticscholar.org/search?q=%22computer%20vision%22&sort=relevance&ae=false
  • Deep Learning (2.4萬條結(jié)果):https://www.semanticscholar.org/search?q=%22deep%20learning%22&sort=relevance&ae=false
  • Andrej Karpathy開發(fā)的網(wǎng)站:http://www.arxiv-sanity.com/

教程

我另外單獨(dú)有一篇詳細(xì)的文章涵蓋了我發(fā)現(xiàn)的所有的優(yōu)秀教程內(nèi)容:

  • 超過150種最佳的機(jī)器學(xué)習(xí)、自然語(yǔ)言處理和Python教程:https://unsupervisedmethods.com/over-150-of-the-best-machine-learning-nlp-and-python-tutorials-ive-found-ffce2939bd7

小抄表

[[222828]]

和教程一樣,我同樣單獨(dú)有一篇文章介紹了許多種很有用的小抄表:

  • 機(jī)器學(xué)習(xí)、Python和數(shù)學(xué)小抄表:https://unsupervisedmethods.com/cheat-sheet-of-machine-learning-and-python-and-math-cheat-sheets-a4afe4e791b6

通讀完本篇文章,是不是對(duì)于如何查找關(guān)于人工智能領(lǐng)域的資料有了清晰的方向。資料很多,大多都是國(guó)外的網(wǎng)站,所以大家需要科學(xué)上網(wǎng)喲~~~

原文鏈接:

https://unsupervisedmethods.com/my-curated-list-of-ai-and-machine-learning-resources-from-around-the-web-9a97823b8524

【本文是51CTO專欄機(jī)構(gòu)大數(shù)據(jù)文摘的原創(chuàng)譯文,微信公眾號(hào)“大數(shù)據(jù)文摘( id: BigDataDigest)”】

     大數(shù)據(jù)文摘二維碼

戳這里,看該作者更多好文

責(zé)任編輯:趙寧寧 來源: 51CTO專欄
相關(guān)推薦

2024-04-09 14:04:38

人工智能機(jī)器學(xué)習(xí)

2019-01-16 09:56:27

2017-03-07 14:51:07

2022-10-27 10:58:49

人工智能AI

2021-04-16 09:53:45

人工智能機(jī)器學(xué)習(xí)深度學(xué)習(xí)

2020-09-07 11:28:09

人工智能機(jī)器學(xué)習(xí)AI

2018-05-21 10:20:22

人工智能機(jī)器學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)

2015-10-10 09:32:24

機(jī)器學(xué)習(xí)人工智能

2017-03-18 16:28:40

人工智能機(jī)器學(xué)習(xí)深度學(xué)習(xí)

2022-11-26 00:00:00

人工智能存儲(chǔ)數(shù)據(jù)

2022-06-01 14:33:59

人工智能交通運(yùn)輸機(jī)器學(xué)習(xí)

2021-02-26 10:02:13

人工智能深度學(xué)習(xí)機(jī)器學(xué)習(xí)

2018-07-20 09:24:37

人工智能創(chuàng)業(yè)人才

2023-05-18 17:25:36

2019-03-06 09:00:00

機(jī)器學(xué)習(xí)人工智能

2020-10-16 10:19:10

智能

2017-04-18 15:49:24

人工智能機(jī)器學(xué)習(xí)數(shù)據(jù)

2023-11-03 15:05:41

2021-01-14 11:18:00

人工智能AI機(jī)器學(xué)習(xí)

2021-03-30 13:45:00

人工智能
點(diǎn)贊
收藏

51CTO技術(shù)棧公眾號(hào)