Python 爬取了馬蜂窩的出行數(shù)據(jù),告訴你這個(gè)夏天哪里最值得去!
正值火辣的暑假,朋友圈已經(jīng)被大家的旅行足跡刷屏了,真的十分驚嘆于那些把全國(guó)所有省基本走遍的朋友們。與此同時(shí),也就萌生了寫篇旅行相關(guān)的內(nèi)容,本次數(shù)據(jù)來(lái)源于一個(gè)對(duì)于爬蟲十分友好的旅行攻略類網(wǎng)站:螞蜂窩。
一、獲得城市編號(hào)
螞蜂窩中的所有城市、景點(diǎn)以及其他的一些信息都有一個(gè)專屬的5位數(shù)字編號(hào),我們***步要做的就是獲取城市(直轄市+地級(jí)市)的編號(hào),進(jìn)行后續(xù)的進(jìn)一步分析。

以上兩個(gè)頁(yè)面就是我們的城市編碼來(lái)源。需要首先從目的地頁(yè)面獲得各省編碼,之后進(jìn)入各省城市列表獲得編碼。
過程中需要Selenium進(jìn)行動(dòng)態(tài)數(shù)據(jù)爬取,部分代碼如下:
- def find_cat_url(url):
- headers = {'User-Agent':'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:23.0) Gecko/20100101 Firefox/23.0'}
- req=request.Request(url,headers=headers)
- html=urlopen(req)
- bsObj=BeautifulSoup(html.read(),"html.parser")
- bs = bsObj.find('div',attrs={'class':'hot-list clearfix'}).find_all('dt')
- cat_url = []
- cat_name = []
- for i in range(0,len(bs)):
- for j in range(0,len(bs[i].find_all('a'))):
- cat_url.append(bs[i].find_all('a')[j].attrs['href'])
- cat_name.append(bs[i].find_all('a')[j].text)
- cat_url = ['http://www.mafengwo.cn'+cat_url[i] for i in range(0,len(cat_url))]
- return cat_url
- def find_city_url(url_list):
- city_name_list = []
- city_url_list = []
- for i in range(0,len(url_list)):
- driver = webdriver.Chrome()
- driver.maximize_window()
- url = url_list[i].replace('travel-scenic-spot/mafengwo','mdd/citylist')
- driver.get(url)
- while True:
- try:
- time.sleep(2)
- bs = BeautifulSoup(driver.page_source,'html.parser')
- url_set = bs.find_all('a',attrs={'data-type':'目的地'})
- city_name_list = city_name_list +[url_set[i].text.replace('\n','').split()[0] for i in range(0,len(url_set))]
- city_url_list = city_url_list+[url_set[i].attrs['data-id'] for i in range(0,len(url_set))]
- js="var q=document.documentElement.scrollTop=800"
- driver.execute_script(js)
- time.sleep(2)
- driver.find_element_by_class_name('pg-next').click()
- except:
- break
- driver.close()
- return city_name_list,city_url_list
- url = 'http://www.mafengwo.cn/mdd/'
- url_list = find_cat_url(url)
- city_name_list,city_url_list=find_city_url(url_list)
- city = pd.DataFrame({'city':city_name_list,'id':city_url_list})
二、獲得城市信息
城市數(shù)據(jù)分別從以下幾個(gè)頁(yè)面獲?。?/p>
(a)小吃頁(yè)面

(b)景點(diǎn)頁(yè)面

(c)標(biāo)簽頁(yè)面

我們將每個(gè)城市獲取數(shù)據(jù)的過程封裝成函數(shù),每次傳入之前獲得的城市編碼,部分代碼如下:
- def get_city_info(city_name,city_code):
- this_city_base = get_city_base(city_name,city_code)
- this_city_jd = get_city_jd(city_name,city_code)
- this_city_jd['city_name'] = city_name
- this_city_jd['total_city_yj'] = this_city_base['total_city_yj']
- try:
- this_city_food = get_city_food(city_name,city_code)
- this_city_food['city_name'] = city_name
- this_city_food['total_city_yj'] = this_city_base['total_city_yj']
- except:
- this_city_food=pd.DataFrame()
- return this_city_base,this_city_food,this_city_jd
- def get_city_base(city_name,city_code):
- url = 'http://www.mafengwo.cn/xc/'+str(city_code)+'/'
- bsObj = get_static_url_content(url)
- node = bsObj.find('div',{'class':'m-tags'}).find('div',{'class':'bd'}).find_all('a')
- tag = [node[i].text.split()[0] for i in range(0,len(node))]
- tag_node = bsObj.find('div',{'class':'m-tags'}).find('div',{'class':'bd'}).find_all('em')
- tag_count = [int(k.text) for k in tag_node]
- par = [k.attrs['href'][1:3] for k in node]
- tag_all_count = sum([int(tag_count[i]) for i in range(0,len(tag_count))])
- tag_jd_count = sum([int(tag_count[i]) for i in range(0,len(tag_count)) if par[i]=='jd'])
- tag_cy_count = sum([int(tag_count[i]) for i in range(0,len(tag_count)) if par[i]=='cy'])
- tag_gw_yl_count = sum([int(tag_count[i]) for i in range(0,len(tag_count)) if par[i] in ['gw','yl']])
- url = 'http://www.mafengwo.cn/yj/'+str(city_code)+'/2-0-1.html '
- bsObj = get_static_url_content(url)
- total_city_yj = int(bsObj.find('span',{'class':'count'}).find_all('span')[1].text)
- return {'city_name':city_name,'tag_all_count':tag_all_count,'tag_jd_count':tag_jd_count,
- 'tag_cy_count':tag_cy_count,'tag_gw_yl_count':tag_gw_yl_count,
- 'total_city_yj':total_city_yj}
- def get_city_food(city_name,city_code):
- url = 'http://www.mafengwo.cn/cy/'+str(city_code)+'/gonglve.html'
- bsObj = get_static_url_content(url)
- food=[k.text for k in bsObj.find('ol',{'class':'list-rank'}).find_all('h3')]
- food_count=[int(k.text) for k in bsObj.find('ol',{'class':'list-rank'}).find_all('span',{'class':'trend'})]
- return pd.DataFrame({'food':food[0:len(food_count)],'food_count':food_count})
- def get_city_jd(city_name,city_code):
- url = 'http://www.mafengwo.cn/jd/'+str(city_code)+'/gonglve.html'
- bsObj = get_static_url_content(url)
- node=bsObj.find('div',{'class':'row-top5'}).find_all('h3')
- jd = [k.text.split('\n')[2] for k in node]
- node=bsObj.find_all('span',{'class':'rev-total'})
- jd_count=[int(k.text.replace(' 條點(diǎn)評(píng)','')) for k in node]
- return pd.DataFrame({'jd':jd[0:len(jd_count)],'jd_count':jd_count})
三、數(shù)據(jù)分析
PART1:城市數(shù)據(jù)
首先我們看一下游記數(shù)量最多的***0城市:

游記數(shù)量***0數(shù)量基本上與我們?nèi)粘K私獾臒衢T城市相符,我們進(jìn)一步根據(jù)各個(gè)城市游記數(shù)量獲得全國(guó)旅行目的地?zé)崃D:

看到這里,是不是有種似曾相識(shí)的感覺,如果你在朋友圈曬的足跡圖與這幅圖很相符,那么說明螞蜂窩的數(shù)據(jù)與你不謀而合。
***我們看一下大家對(duì)于各個(gè)城市的印象是如何的,方法就是提取標(biāo)簽中的屬性,我們將屬性分為了休閑、飲食、景點(diǎn)三組,分別看一下每一組屬性下大家印象最深的城市:

看來(lái)對(duì)于螞蜂窩的用戶來(lái)說,廈門給大家留下的印象是非常深的,不僅游記數(shù)量充足,并且能從中提取的有效標(biāo)簽也非常多。重慶、西安、成都也無(wú)懸念地給吃貨們留下了非常深的印象,部分代碼如下:
- bar1 = Bar("餐飲類標(biāo)簽排名")
- bar1.add("餐飲類標(biāo)簽分?jǐn)?shù)", city_aggregate.sort_values('cy_point',0,False)['city_name'][0:15],
- city_aggregate.sort_values('cy_point',0,False)['cy_point'][0:15],
- is_splitline_show =False,xaxis_rotate=30)
- bar2 = Bar("景點(diǎn)類標(biāo)簽排名",title_top="30%")
- bar2.add("景點(diǎn)類標(biāo)簽分?jǐn)?shù)", city_aggregate.sort_values('jd_point',0,False)['city_name'][0:15],
- city_aggregate.sort_values('jd_point',0,False)['jd_point'][0:15],
- legend_top="30%",is_splitline_show =False,xaxis_rotate=30)
- bar3 = Bar("休閑類標(biāo)簽排名",title_top="67.5%")
- bar3.add("休閑類標(biāo)簽分?jǐn)?shù)", city_aggregate.sort_values('xx_point',0,False)['city_name'][0:15],
- city_aggregate.sort_values('xx_point',0,False)['xx_point'][0:15],
- legend_top="67.5%",is_splitline_show =False,xaxis_rotate=30)
- grid = Grid(height=800)
- grid.add(bar1, grid_bottom="75%")
- grid.add(bar2, grid_bottom="37.5%",grid_top="37.5%")
- grid.add(bar3, grid_top="75%")
- grid.render('城市分類標(biāo)簽.html')
PART2:景點(diǎn)數(shù)據(jù)
我們提取了各個(gè)景點(diǎn)評(píng)論數(shù),并與城市游記數(shù)量進(jìn)行對(duì)比,分別得到景點(diǎn)評(píng)論的絕對(duì)值和相對(duì)值,并據(jù)此計(jì)算景點(diǎn)的人氣、代表性兩個(gè)分?jǐn)?shù),最終排名***5的景點(diǎn)如下:

螞蜂窩網(wǎng)友對(duì)于廈門真的是情有獨(dú)鐘,鼓浪嶼也成為了***人氣的景點(diǎn),在城市代表性方面西塘古鎮(zhèn)和羊卓雍措位列前茅。暑假之際,如果擔(dān)心上排的景點(diǎn)人太多,不妨從下排的景點(diǎn)中挖掘那些人少景美的旅游地。
PART3:小吃數(shù)據(jù)
***我們看一下大家最關(guān)注的的與吃相關(guān)的數(shù)據(jù),處理方法與PART2景點(diǎn)數(shù)據(jù)相似,我們分別看一下***人氣和***城市代表性的小吃。

出乎意料,螞蜂窩網(wǎng)友對(duì)廈門果真愛得深沉,讓沙茶面得以超過火鍋、烤鴨、肉夾饃躋身***人氣的小吃。
在城市代表性方面,海鮮的出場(chǎng)頻率非常高,這點(diǎn)與大(ben)家(ren)的認(rèn)知也不謀而合,PART2與3的部分代碼如下:
- bar1 = Bar("景點(diǎn)人氣排名")
- bar1.add("景點(diǎn)人氣分?jǐn)?shù)", city_jd_com.sort_values('rq_point',0,False)['jd'][0:15],
- city_jd_com.sort_values('rq_point',0,False)['rq_point'][0:15],
- is_splitline_show =False,xaxis_rotate=30)
- bar2 = Bar("景點(diǎn)代表性排名",title_top="55%")
- bar2.add("景點(diǎn)代表性分?jǐn)?shù)", city_jd_com.sort_values('db_point',0,False)['jd'][0:15],
- city_jd_com.sort_values('db_point',0,False)['db_point'][0:15],
- is_splitline_show =False,xaxis_rotate=30,legend_top="55%")
- grid=Grid(height=800)
- grid.add(bar1, grid_bottom="60%")
- grid.add(bar2, grid_top="60%",grid_bottom="10%")
- grid.render('景點(diǎn)排名.html')
文中所有涉及到的代碼已經(jīng)發(fā)到Github上了,歡迎大家自取:
http://github.com/shujusenlin/mafengwo_data。
作者:徐麟,知乎同名專欄作者,目前就職于上海唯品會(huì)產(chǎn)品技術(shù)中心,哥大統(tǒng)計(jì)數(shù)據(jù)狗,從事數(shù)據(jù)挖掘&分析工作,喜歡用R&Python玩一些不一樣的數(shù)據(jù)。