自拍偷在线精品自拍偷,亚洲欧美中文日韩v在线观看不卡

解析人臉識(shí)別系統(tǒng)的技術(shù)流程

人工智能 人臉識(shí)別
人臉識(shí)別,是基于人的臉部特征信息進(jìn)行身份識(shí)別的一種生物識(shí)別技術(shù)。用攝像機(jī)或攝像頭采集含有人臉的圖像或視頻流,并自動(dòng)在圖像中檢測(cè)和跟蹤人臉,進(jìn)而對(duì)檢測(cè)到的人臉進(jìn)行臉部的一系列相關(guān)技術(shù),通常也叫做人像識(shí)別、面部識(shí)別。

人臉識(shí)別,是基于人的臉部特征信息進(jìn)行身份識(shí)別的一種生物識(shí)別技術(shù)。用攝像機(jī)或攝像頭采集含有人臉的圖像或視頻流,并自動(dòng)在圖像中檢測(cè)和跟蹤人臉,進(jìn)而對(duì)檢測(cè)到的人臉進(jìn)行臉部的一系列相關(guān)技術(shù),通常也叫做人像識(shí)別、面部識(shí)別。

[[268928]]

 

人臉識(shí)別系統(tǒng)的研究始于20世紀(jì)60年代,80年代后隨著計(jì)算機(jī)技術(shù)和光學(xué)成像技術(shù)的發(fā)展得到提高,而真正進(jìn)入初級(jí)的應(yīng)用階段則在90年后期,并且以美國(guó)、德國(guó)和日本的技術(shù)實(shí)現(xiàn)為主;人臉識(shí)別系統(tǒng)成功的關(guān)鍵在于是否擁有***的核心算法,并使識(shí)別結(jié)果具有實(shí)用化的識(shí)別率和識(shí)別速度;“人臉識(shí)別系統(tǒng)”集成了人工智能、機(jī)器識(shí)別、機(jī)器學(xué)習(xí)、模型理論、專家系統(tǒng)、視頻圖像處理等多種專業(yè)技術(shù),同時(shí)需結(jié)合中間值處理的理論與實(shí)現(xiàn),是生物特征識(shí)別的***應(yīng)用,其核心技術(shù)的實(shí)現(xiàn),展現(xiàn)了弱人工智能向強(qiáng)人工智能的轉(zhuǎn)化。

[[268929]]

 

人臉識(shí)別系統(tǒng)主要包括四個(gè)組成部分,分別為:人臉圖像采集及檢測(cè)、人臉圖像預(yù)處理、人臉圖像特征提取以及匹配與識(shí)別。

人臉圖像采集及檢測(cè)

人臉圖像采集:不同的人臉圖像都能通過(guò)攝像鏡頭采集下來(lái),比如靜態(tài)圖像、動(dòng)態(tài)圖像、不同的位置、不同表情等方面都可以得到很好的采集。當(dāng)用戶在采集設(shè)備的拍攝范圍內(nèi)時(shí),采集設(shè)備會(huì)自動(dòng)搜索并拍攝用戶的人臉圖像。

人臉檢測(cè):人臉檢測(cè)在實(shí)際中主要用于人臉識(shí)別的預(yù)處理,即在圖像中準(zhǔn)確標(biāo)定出人臉的位置和大小。人臉圖像中包含的模式特征十分豐富,如直方圖特征、顏色特征、模板特征、結(jié)構(gòu)特征及Haar特征等。人臉檢測(cè)就是把這其中有用的信息挑出來(lái),并利用這些特征實(shí)現(xiàn)人臉檢測(cè)。

主流的人臉檢測(cè)方法基于以上特征采用Adaboost學(xué)習(xí)算法,Adaboost算法是一種用來(lái)分類的方法,它把一些比較弱的分類方法合在一起,組合出新的很強(qiáng)的分類方法。

人臉檢測(cè)過(guò)程中使用Adaboost算法挑選出一些最能代表人臉的矩形特征(弱分類器),按照加權(quán)投票的方式將弱分類器構(gòu)造為一個(gè)強(qiáng)分類器,再將訓(xùn)練得到的若干強(qiáng)分類器串聯(lián)組成一個(gè)級(jí)聯(lián)結(jié)構(gòu)的層疊分類器,有效地提高分類器的檢測(cè)速度。

人臉圖像預(yù)處理

人臉圖像預(yù)處理:對(duì)于人臉的圖像預(yù)處理是基于人臉檢測(cè)結(jié)果,對(duì)圖像進(jìn)行處理并最終服務(wù)于特征提取的過(guò)程。系統(tǒng)獲取的原始圖像由于受到各種條件的限制和隨機(jī)干擾,往往不能直接使用,必須在圖像處理的早期階段對(duì)它進(jìn)行灰度校正、噪聲過(guò)濾等圖像預(yù)處理。對(duì)于人臉圖像而言,其預(yù)處理過(guò)程主要包括人臉圖像的光線補(bǔ)償、灰度變換、直方圖均衡化、歸一化、幾何校正、濾波以及銳化等。

人臉圖像特征提取

人臉圖像特征提?。喝四樧R(shí)別系統(tǒng)可使用的特征通常分為視覺(jué)特征、像素統(tǒng)計(jì)特征、人臉圖像變換系數(shù)特征、人臉圖像代數(shù)特征等。人臉特征提取就是針對(duì)人臉的某些特征進(jìn)行的。人臉特征提取,也稱人臉表征,它是對(duì)人臉進(jìn)行特征建模的過(guò)程。人臉特征提取的方法歸納起來(lái)分為兩大類:一種是基于知識(shí)的表征方法;另外一種是基于代數(shù)特征或統(tǒng)計(jì)學(xué)習(xí)的表征方法。

基于知識(shí)的表征方法主要是根據(jù)人臉器官的形狀描述以及他們之間的距離特性來(lái)獲得有助于人臉?lè)诸惖奶卣鲾?shù)據(jù),其特征分量通常包括特征點(diǎn)間的歐氏距離、曲率和角度等。人臉由眼睛、鼻子、嘴、下巴等局部構(gòu)成,對(duì)這些局部和它們之間結(jié)構(gòu)關(guān)系的幾何描述,可作為識(shí)別人臉的重要特征,這些特征被稱為幾何特征?;谥R(shí)的人臉表征主要包括基于幾何特征的方法和模板匹配法。

人臉圖像匹配與識(shí)別

人臉圖像匹配與識(shí)別:提取的人臉圖像的特征數(shù)據(jù)與數(shù)據(jù)庫(kù)中存儲(chǔ)的特征模板進(jìn)行搜索匹配,通過(guò)設(shè)定一個(gè)閾值,當(dāng)相似度超過(guò)這一閾值,則把匹配得到的結(jié)果輸出。人臉識(shí)別就是將待識(shí)別的人臉特征與已得到的人臉特征模板進(jìn)行比較,根據(jù)相似程度對(duì)人臉的身份信息進(jìn)行判斷。這一過(guò)程又分為兩類:一類是確認(rèn),是一對(duì)一進(jìn)行圖像比較的過(guò)程,另一類是辨認(rèn),是一對(duì)多進(jìn)行圖像匹配對(duì)比的過(guò)程。 

責(zé)任編輯:龐桂玉 來(lái)源: 今日頭條
相關(guān)推薦

2021-11-03 10:49:33

人臉識(shí)別人工智能技術(shù)

2018-05-11 14:10:17

Python人臉識(shí)別

2022-05-06 10:21:22

Python人臉識(shí)別

2021-03-09 11:20:05

人臉識(shí)別人工智能AI

2020-08-13 10:01:49

工具代碼開發(fā)

2024-06-12 08:10:08

2020-10-25 19:12:01

人臉識(shí)別AI人工智能

2020-12-03 09:47:20

人臉識(shí)別系統(tǒng)

2020-08-19 09:25:32

Python人臉識(shí)別人工智能

2021-12-15 16:54:05

區(qū)塊鏈面部識(shí)別技術(shù)

2021-11-03 13:32:28

MetaFacebook人臉識(shí)別

2022-04-07 14:19:57

人工智能面部識(shí)別人臉照片

2020-11-18 09:43:29

人臉識(shí)別AI人工智能

2019-12-04 14:05:03

人臉識(shí)別AI人工智能

2022-06-16 21:01:32

人臉識(shí)別人工智能生物識(shí)別

2021-04-12 14:40:50

人臉識(shí)別面部識(shí)別人工智能

2015-07-20 09:52:22

NEC

2021-08-06 09:30:34

人工智能AI人臉識(shí)別

2020-03-27 15:44:19

人臉識(shí)別技術(shù)網(wǎng)絡(luò)
點(diǎn)贊
收藏

51CTO技術(shù)棧公眾號(hào)