面試多線程同步,你必須要思考的問題
ReentrantLock的實現(xiàn)網(wǎng)上有很多文章了,本篇文章會簡單介紹下其java層實現(xiàn),重點放在分析競爭鎖失敗后如何阻塞線程。 因篇幅有限,synchronized的內容將會放到下篇文章。
Java Lock的實現(xiàn)
ReentrantLock是jdk中常用的鎖實現(xiàn),其實現(xiàn)邏輯主語基于AQS(juc包中的大多數(shù)同步類實現(xiàn)都是基于AQS);接下來會簡單介紹AQS的大致原理,關于其實現(xiàn)細節(jié)以及各種應用,之后會寫一篇文章具體分析。
AQS
AQS是類AbstractQueuedSynchronizer.java的簡稱,JUC包下的ReentrantLock、CyclicBarrier、CountdownLatch都使用到了AQS。
其大致原理如下:
- AQS維護一個叫做state的int型變量和一個雙向鏈表,state用來表示同步狀態(tài),雙向鏈表存儲的是等待鎖的線程
- 加鎖時首先調用tryAcquire嘗試獲得鎖,如果獲得鎖失敗,則將線程插入到雙向鏈表中,并調用LockSupport.park()方法阻塞當前線程。
- 釋放鎖時調用LockSupport.unpark()喚起鏈表中的第一個節(jié)點的線程。被喚起的線程會重新走一遍競爭鎖的流程。
其中tryAcquire方法是抽象方法,具體實現(xiàn)取決于實現(xiàn)類,我們常說的公平鎖和非公平鎖的區(qū)別就在于該方法的實現(xiàn)。
ReentrantLock
ReentrantLock分為公平鎖和非公平鎖,我們只看公平鎖。 ReentrantLock.lock會調用到ReentrantLock#FairSync.lock中:
FairSync.java
- static final class FairSync extends Sync {
- final void lock() {
- acquire(1);
- }
- /**
- * Fair version of tryAcquire. Don't grant access unless
- * recursive call or no waiters or is first.
- */
- protected final boolean tryAcquire(int acquires) {
- final Thread current = Thread.currentThread();
- int c = getState();
- if (c == 0) {
- if (!hasQueuedPredecessors() &&
- compareAndSetState(0, acquires)) {
- setExclusiveOwnerThread(current);
- return true;
- }
- }
- else if (current == getExclusiveOwnerThread()) {
- int nextc = c + acquires;
- if (nextc < 0)
- throw new Error("Maximum lock count exceeded");
- setState(nextc);
- return true;
- }
- return false;
- }
- }
AbstractQueuedSynchronizer.java
- public final void acquire(int arg) {
- if (!tryAcquire(arg) &&
- acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
- selfInterrupt();
- }
可以看到FairSync.lock調用了AQS的acquire方法,而在acquire中首先調用tryAcquire嘗試獲得鎖,以下兩種情況返回true:
- state==0(代表沒有線程持有鎖),且等待隊列為空(公平的實現(xiàn)),且cas修改state成功。
- 當前線程已經(jīng)獲得了鎖,這次調用是重入
如果tryAcquire失敗則調用acquireQueued阻塞當前線程。acquireQueued最終會調用到LockSupport.park()阻塞線程。
LockSupport.park
個人認為,要深入理解鎖機制,一個很重要的點是理解系統(tǒng)是如何阻塞線程的。
LockSupport.java
- public static void park(Object blocker) {
- Thread t = Thread.currentThread();
- setBlocker(t, blocker);
- UNSAFE.park(false, 0L);
- setBlocker(t, null);
- }
park方法的參數(shù)blocker是用于負責這次阻塞的同步對象,在AQS的調用中,這個對象就是AQS本身。我們知道synchronized關鍵字是需要指定一個對象的(如果作用于方法上則是當前對象或當前類),與之類似blocker就是LockSupport指定的對象。
park方法調用了native方法UNSAFE.park,第一個參數(shù)代表第二個參數(shù)是否是絕對時間,第二個參數(shù)代表最長阻塞時間。
其實現(xiàn)如下,只保留核心代碼,完整代碼看查看unsafe.cpp
- Unsafe_Park(JNIEnv *env, jobject unsafe, jboolean isAbsolute, jlong time){
- ...
- thread->parker()->park(isAbsolute != 0, time);
- ...
- }
park方法在os_linux.cpp中(其他操作系統(tǒng)的實現(xiàn)在os_xxx中)
- void Parker::park(bool isAbsolute, jlong time) {
- ...
- //獲得當前線程
- Thread* thread = Thread::current();
- assert(thread->is_Java_thread(), "Must be JavaThread");
- JavaThread *jt = (JavaThread *)thread;
- //如果當前線程被設置了interrupted標記,則直接返回
- if (Thread::is_interrupted(thread, false)) {
- return;
- }
- if (time > 0) {
- //unpacktime中根據(jù)isAbsolute的值來填充absTime結構體,isAbsolute為true時,time代表絕對時間且單位是毫秒,否則time是相對時間且單位是納秒
- //absTime.tvsec代表了對于時間的秒
- //absTime.tv_nsec代表對應時間的納秒
- unpackTime(&absTime, isAbsolute, time);
- }
- //調用mutex trylock方法
- if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
- return;
- }
- //_counter是一個許可的數(shù)量,跟ReentrantLock里定義的許可變量基本都是一個原理。 unpack方法調用時會將_counter賦值為1。
- //_counter>0代表已經(jīng)有人調用了unpark,所以不用阻塞
- int status ;
- if (_counter > 0) { // no wait needed
- _counter = 0;
- //釋放mutex鎖
- status = pthread_mutex_unlock(_mutex);
- return;
- }
- //設置線程狀態(tài)為CONDVAR_WAIT
- OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
- ...
- //等待
- _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
- pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
- ...
- //釋放mutex鎖
- status = pthread_mutex_unlock(_mutex) ;
- }
park方法用POSIX的pthread_cond_timedwait方法阻塞線程,調用pthread_cond_timedwait前需要先獲得鎖,因此park主要流程為:
- 調用pthread_mutex_trylock嘗試獲得鎖,如果獲取鎖失敗則直接返回
- 調用pthread_cond_timedwait進行等待
- 調用pthread_mutex_unlock釋放鎖
另外,在阻塞當前線程前,會調用OSThreadWaitState的構造方法將線程狀態(tài)設置為CONDVAR_WAIT,在Jvm中Thread狀態(tài)枚舉如下
- enum ThreadState {
- ALLOCATED, // Memory has been allocated but not initialized
- INITIALIZED, // The thread has been initialized but yet started
- RUNNABLE, // Has been started and is runnable, but not necessarily running
- MONITOR_WAIT, // Waiting on a contended monitor lock
- CONDVAR_WAIT, // Waiting on a condition variable
- OBJECT_WAIT, // Waiting on an Object.wait() call
- BREAKPOINTED, // Suspended at breakpoint
- SLEEPING, // Thread.sleep()
- ZOMBIE // All done, but not reclaimed yet
- };
Linux的timedwait
由上文我們可以知道LockSupport.park方法最終是由POSIX的 pthread_cond_timedwait的方法實現(xiàn)的。 我們現(xiàn)在就進一步看看pthread_mutex_trylock,pthread_cond_timedwait,pthread_mutex_unlock這幾個方法是如何實現(xiàn)的。
Linux系統(tǒng)中相關代碼在glibc庫中。
pthread_mutex_trylock
先看trylock的實現(xiàn), 代碼在glibc的pthread_mutex_trylock.c文件中,該方法代碼很多,我們只看主要代碼
- //pthread_mutex_t是posix中的互斥鎖結構體
- int
- __pthread_mutex_trylock (mutex)
- pthread_mutex_t *mutex;
- {
- int oldval;
- pid_t id = THREAD_GETMEM (THREAD_SELF, tid);
- switch (__builtin_expect (PTHREAD_MUTEX_TYPE (mutex),
- PTHREAD_MUTEX_TIMED_NP))
- {
- case PTHREAD_MUTEX_ERRORCHECK_NP:
- case PTHREAD_MUTEX_TIMED_NP:
- case PTHREAD_MUTEX_ADAPTIVE_NP:
- /* Normal mutex. */
- if (lll_trylock (mutex->__data.__lock) != 0)
- break;
- /* Record the ownership. */
- mutex->__data.__owner = id;
- ++mutex->__data.__nusers;
- return 0;
- }
- }
- //以下代碼在lowlevellock.h中
- #define __lll_trylock(futex) \
- (atomic_compare_and_exchange_val_acq (futex, 1, 0) != 0)
- #define lll_trylock(futex) __lll_trylock (&(futex))
mutex默認用的是PTHREAD_MUTEX_NORMAL類型(與PTHREAD_MUTEX_TIMED_NP相同); 因此會先調用lll_trylock方法,lll_trylock實際上是一個cas操作,如果mutex->data.lock==0則將其修改為1并返回0,否則返回1。
如果成功,則更改mutex中的owner為當前線程。
pthread_mutex_unlock
pthread_mutex_unlock.c
- int
- internal_function attribute_hidden
- __pthread_mutex_unlock_usercnt (mutex, decr)
- pthread_mutex_t *mutex;
- int decr;
- {
- if (__builtin_expect (type, PTHREAD_MUTEX_TIMED_NP)
- == PTHREAD_MUTEX_TIMED_NP)
- {
- /* Always reset the owner field. */
- normal:
- mutex->__data.__owner = 0;
- if (decr)
- /* One less user. */
- --mutex->__data.__nusers;
- /* Unlock. */
- lll_unlock (mutex->__data.__lock, PTHREAD_MUTEX_PSHARED (mutex));
- return 0;
- }
- }
pthread_mutex_unlock將mutex中的owner清空,并調用了lll_unlock方法
lowlevellock.h
- #define __lll_unlock(futex, private) \
- ((void) ({ \
- int *__futex = (futex); \
- int __val = atomic_exchange_rel (__futex, 0); \
- \
- if (__builtin_expect (__val > 1, 0)) \
- lll_futex_wake (__futex, 1, private); \
- }))
- #define lll_unlock(futex, private) __lll_unlock(&(futex), private)
- #define lll_futex_wake(ftx, nr, private) \
- ({ \
- DO_INLINE_SYSCALL(futex, 3, (long) (ftx), \
- __lll_private_flag (FUTEX_WAKE, private), \
- (int) (nr)); \
- _r10 == -1 ? -_retval : _retval; \
- })
lll_unlock分為兩個步驟:
- 將futex設置為0并拿到設置之前的值(用戶態(tài)操作)
- 如果futex之前的值>1,代表存在鎖沖突,也就是說有線程調用了FUTEX_WAIT在休眠,所以通過調用系統(tǒng)函數(shù)FUTEX_WAKE喚醒休眠線程
FUTEX_WAKE在上一篇文章有分析,futex機制的核心是當獲得鎖時,嘗試cas更改一個int型變量(用戶態(tài)操作),如果integer原始值是0,則修改成功,該線程獲得鎖,否則就將當期線程放入到 wait queue中,wait queue中的線程不會被系統(tǒng)調度(內核態(tài)操作)。
futex變量的值有3種:0代表當前鎖空閑,1代表有線程持有當前鎖,2代表存在鎖沖突。futex的值初始化時是0;當調用try_lock的時候會利用cas操作改為1(見上面的trylock函數(shù));當調用lll_lock時,如果不存在鎖沖突,則將其改為1,否則改為2。
- #define __lll_lock(futex, private) \
- ((void) ({ \
- int *__futex = (futex); \
- if (__builtin_expect (atomic_compare_and_exchange_bool_acq (__futex, \
- 1, 0), 0)) \
- { \
- if (__builtin_constant_p (private) && (private) == LLL_PRIVATE) \
- __lll_lock_wait_private (__futex); \
- else \
- __lll_lock_wait (__futex, private); \
- } \
- }))
- #define lll_lock(futex, private) __lll_lock (&(futex), private)
- void
- __lll_lock_wait_private (int *futex)
- {
- //第一次進來的時候futex==1,所以不會走這個if
- if (*futex == 2)
- lll_futex_wait (futex, 2, LLL_PRIVATE);
- //在這里會把futex設置成2,并調用futex_wait讓當前線程等待
- while (atomic_exchange_acq (futex, 2) != 0)
- lll_futex_wait (futex, 2, LLL_PRIVATE);
- }
pthread_cond_timedwait
pthread_cond_timedwait用于阻塞線程,實現(xiàn)線程等待, 代碼在glibc的pthread_cond_timedwait.c文件中,代碼較長,你可以先簡單過一遍,看完下面的分析再重新讀一遍代碼
- int
- int
- __pthread_cond_timedwait (cond, mutex, abstime)
- pthread_cond_t *cond;
- pthread_mutex_t *mutex;
- const struct timespec *abstime;
- {
- struct _pthread_cleanup_buffer buffer;
- struct _condvar_cleanup_buffer cbuffer;
- int result = 0;
- /* Catch invalid parameters. */
- if (abstime->tv_nsec < 0 || abstime->tv_nsec >= 1000000000)
- return EINVAL;
- int pshared = (cond->__data.__mutex == (void *) ~0l)
- ? LLL_SHARED : LLL_PRIVATE;
- //1.獲得cond鎖
- lll_lock (cond->__data.__lock, pshared);
- //2.釋放mutex鎖
- int err = __pthread_mutex_unlock_usercnt (mutex, 0);
- if (err)
- {
- lll_unlock (cond->__data.__lock, pshared);
- return err;
- }
- /* We have one new user of the condvar. */
- //每執(zhí)行一次wait(pthread_cond_timedwait/pthread_cond_wait),__total_seq就會+1
- ++cond->__data.__total_seq;
- //用來執(zhí)行futex_wait的變量
- ++cond->__data.__futex;
- //標識該cond還有多少線程在使用,pthread_cond_destroy需要等待所有的操作完成
- cond->__data.__nwaiters += 1 << COND_NWAITERS_SHIFT;
- /* Remember the mutex we are using here. If there is already a
- different address store this is a bad user bug. Do not store
- anything for pshared condvars. */
- //保存mutex鎖
- if (cond->__data.__mutex != (void *) ~0l)
- cond->__data.__mutex = mutex;
- /* Prepare structure passed to cancellation handler. */
- cbuffer.cond = cond;
- cbuffer.mutex = mutex;
- /* Before we block we enable cancellation. Therefore we have to
- install a cancellation handler. */
- __pthread_cleanup_push (&buffer, __condvar_cleanup, &cbuffer);
- /* The current values of the wakeup counter. The "woken" counter
- must exceed this value. */
- //記錄futex_wait前的__wakeup_seq(為該cond上執(zhí)行了多少次sign操作+timeout次數(shù))和__broadcast_seq(代表在該cond上執(zhí)行了多少次broadcast)
- unsigned long long int val;
- unsigned long long int seq;
- val = seq = cond->__data.__wakeup_seq;
- /* Remember the broadcast counter. */
- cbuffer.bc_seq = cond->__data.__broadcast_seq;
- while (1)
- {
- //3.計算要wait的相對時間
- struct timespec rt;
- {
- #ifdef __NR_clock_gettime
- INTERNAL_SYSCALL_DECL (err);
- int ret;
- ret = INTERNAL_VSYSCALL (clock_gettime, err, 2,
- (cond->__data.__nwaiters
- & ((1 << COND_NWAITERS_SHIFT) - 1)),
- &rt);
- # ifndef __ASSUME_POSIX_TIMERS
- if (__builtin_expect (INTERNAL_SYSCALL_ERROR_P (ret, err), 0))
- {
- struct timeval tv;
- (void) gettimeofday (&tv, NULL);
- /* Convert the absolute timeout value to a relative timeout. */
- rt.tv_sec = abstime->tv_sec - tv.tv_sec;
- rt.tv_nsec = abstime->tv_nsec - tv.tv_usec * 1000;
- }
- else
- # endif
- {
- /* Convert the absolute timeout value to a relative timeout. */
- rt.tv_sec = abstime->tv_sec - rt.tv_sec;
- rt.tv_nsec = abstime->tv_nsec - rt.tv_nsec;
- }
- #else
- /* Get the current time. So far we support only one clock. */
- struct timeval tv;
- (void) gettimeofday (&tv, NULL);
- /* Convert the absolute timeout value to a relative timeout. */
- rt.tv_sec = abstime->tv_sec - tv.tv_sec;
- rt.tv_nsec = abstime->tv_nsec - tv.tv_usec * 1000;
- #endif
- }
- if (rt.tv_nsec < 0)
- {
- rt.tv_nsec += 1000000000;
- --rt.tv_sec;
- }
- /*---計算要wait的相對時間 end---- */
- //是否超時
- /* Did we already time out? */
- if (__builtin_expect (rt.tv_sec < 0, 0))
- {
- //被broadcast喚醒,這里疑問的是,為什么不需要判斷__wakeup_seq?
- if (cbuffer.bc_seq != cond->__data.__broadcast_seq)
- goto bc_out;
- goto timeout;
- }
- unsigned int futex_val = cond->__data.__futex;
- //4.釋放cond鎖,準備wait
- lll_unlock (cond->__data.__lock, pshared);
- /* Enable asynchronous cancellation. Required by the standard. */
- cbuffer.oldtype = __pthread_enable_asynccancel ();
- //5.調用futex_wait
- /* Wait until woken by signal or broadcast. */
- err = lll_futex_timed_wait (&cond->__data.__futex,
- futex_val, &rt, pshared);
- /* Disable asynchronous cancellation. */
- __pthread_disable_asynccancel (cbuffer.oldtype);
- //6.重新獲得cond鎖,因為又要訪問&修改cond的數(shù)據(jù)了
- lll_lock (cond->__data.__lock, pshared);
- //__broadcast_seq值發(fā)生改變,代表發(fā)生了有線程調用了廣播
- if (cbuffer.bc_seq != cond->__data.__broadcast_seq)
- goto bc_out;
- //判斷是否是被sign喚醒的,sign會增加__wakeup_seq
- //第二個條件cond->__data.__woken_seq != val的意義在于
- //可能兩個線程A、B在wait,一個線程調用了sign導致A被喚醒,這時B因為超時被喚醒
- //對于B線程來說,執(zhí)行到這里時第一個條件也是滿足的,從而導致上層拿到的result不是超時
- //所以這里需要判斷下__woken_seq(即該cond已經(jīng)被喚醒的線程數(shù))是否等于__wakeup_seq(sign執(zhí)行次數(shù)+timeout次數(shù))
- val = cond->__data.__wakeup_seq;
- if (val != seq && cond->__data.__woken_seq != val)
- break;
- /* Not woken yet. Maybe the time expired? */
- if (__builtin_expect (err == -ETIMEDOUT, 0))
- {
- timeout:
- /* Yep. Adjust the counters. */
- ++cond->__data.__wakeup_seq;
- ++cond->__data.__futex;
- /* The error value. */
- result = ETIMEDOUT;
- break;
- }
- }
- //一個線程已經(jīng)醒了所以這里__woken_seq +1
- ++cond->__data.__woken_seq;
- bc_out:
- //
- cond->__data.__nwaiters -= 1 << COND_NWAITERS_SHIFT;
- /* If pthread_cond_destroy was called on this variable already,
- notify the pthread_cond_destroy caller all waiters have left
- and it can be successfully destroyed. */
- if (cond->__data.__total_seq == -1ULL
- && cond->__data.__nwaiters < (1 << COND_NWAITERS_SHIFT))
- lll_futex_wake (&cond->__data.__nwaiters, 1, pshared);
- //9.cond數(shù)據(jù)修改完畢,釋放鎖
- lll_unlock (cond->__data.__lock, pshared);
- /* The cancellation handling is back to normal, remove the handler. */
- __pthread_cleanup_pop (&buffer, 0);
- //10.重新獲得mutex鎖
- err = __pthread_mutex_cond_lock (mutex);
- return err ?: result;
- }
上面的代碼雖然加了注釋,但相信大多數(shù)人第一次看都看不懂。 我們來簡單梳理下,上面代碼有兩把鎖,一把是mutex鎖,一把cond鎖。另外,在調用pthread_cond_timedwait前后必須調用pthread_mutex_lock(&mutex);和pthread_mutex_unlock(&mutex);加/解mutex鎖。
因此pthread_cond_timedwait的使用大致分為幾個流程:
- 加mutex鎖(在pthread_cond_timedwait調用前)
- 加cond鎖
- 釋放mutex鎖
- 修改cond數(shù)據(jù)
- 釋放cond鎖
- 執(zhí)行futex_wait
- 重新獲得cond鎖
- 比較cond的數(shù)據(jù),判斷當前線程是被正常喚醒的還是timeout喚醒的,需不需要重新wait
- 修改cond數(shù)據(jù)
- 是否cond鎖
- 重新獲得mutex鎖
- 釋放mutex鎖(在pthread_cond_timedwait調用后)
看到這里,你可能有幾點疑問:為什么需要兩把鎖?mutex鎖和cond鎖的作用是什么?
mutex鎖
說mutex鎖的作用之前,我們回顧一下java的Object.wait的使用。Object.wait必須是在synchronized同步塊中使用。試想下如果不加synchronized也能運行Object.wait的話會存在什么問題?
- Object condObj=new Object();
- voilate int flag = 0;
- public void waitTest(){
- if(flag == 0){
- condObj.wait();
- }
- }
- public void notifyTest(){
- flag=1;
- condObj.notify();
- }
如上代碼,A線程調用waitTest,這時flag==0,所以準備調用wait方法進行休眠,這時B線程開始執(zhí)行,調用notifyTest將flag置為1,并調用notify方法,注意:此時A線程還沒調用wait,所以notfiy沒有喚醒任何線程。然后A線程繼續(xù)執(zhí)行,調用wait方法進行休眠,而之后不會有人來喚醒A線程,A線程將永久wait下去!
- Object condObj=new Object();
- voilate int flag = 0;
- public void waitTest(){
- synchronized(condObj){
- if(flag == 0){
- condObj.wait();
- }
- }
- }
- public void notifyTest(){
- synchronized(condObj){
- flag=1;
- condObj.notify();
- }
- }
在有鎖保護下的情況下, 當調用condObj.wait時,flag一定是等于0的,不會存在一直wait的問題。
回到pthread_cond_timedwait,其需要加mutex鎖的原因就呼之欲出了: 保證wait和其wait條件的原子性
不管是glibc的pthread_cond_timedwait/pthread_cond_signal還是java層的Object.wait/Object.notify,Jdk AQS的Condition.await/Condition.signal,所有的Condition機制都需要在加鎖環(huán)境下才能使用,其根本原因就是要保證進行線程休眠時,條件變量是沒有被篡改的。
注意下mutex鎖釋放的時機,回顧上文中pthread_cond_timedwait的流程,在第2步時就釋放了mutex鎖,之后調用futex_wait進行休眠,為什么要在休眠前就釋放mutex鎖呢?原因也很簡單:如果不釋放mutex鎖就開始休眠,那其他線程就永遠無法調用signal方法將休眠線程喚醒(因為調用signal方法前需要獲得mutex鎖)。
在線程被喚醒之后還要在第10步中重新獲得mutex鎖是為了保證鎖的語義(思考下如果不重新獲得mutex鎖會發(fā)生什么)。
cond鎖
cond鎖的作用其實很簡單: 保證對象cond->data的線程安全。 在pthread_cond_timedwait時需要修改cond->data的數(shù)據(jù),如增加total_seq(在這個cond上一共執(zhí)行過多少次wait)增加nwaiters(現(xiàn)在還有多少個線程在wait這個cond),所有在修改及訪問cond->data時需要加cond鎖。
這里我沒想明白的一點是,用mutex鎖也能保證cond->data修改的線程安全,只要晚一點釋放mutex鎖就行了。為什么要先釋放mutex,重新獲得cond來保證線程安全? 是為了避免mutex鎖住的范圍太大嗎?
該問題的答案可以見評論區(qū)@11800222 的回答:
mutex鎖不能保護cond->data修改的線程安全,調用signal的線程沒有用mutex鎖保護修改cond的那段臨界區(qū)。
pthread_cond_wait/signal這一對本身用cond鎖同步就能睡眠喚醒。 wait的時候需要傳入mutex是因為睡眠前需要釋放mutex鎖,但睡眠之前又不能有無鎖的空隙,解決辦法是讓mutex鎖在cond鎖上之后再釋放。 而signal前不需要釋放mutex鎖,在持有mutex的情況下signal,之后再釋放mutex鎖。
如何喚醒休眠線程
喚醒休眠線程的代碼比較簡單,主要就是調用lll_futex_wake。
- int
- __pthread_cond_signal (cond)
- pthread_cond_t *cond;
- {
- int pshared = (cond->__data.__mutex == (void *) ~0l)
- ? LLL_SHARED : LLL_PRIVATE;
- //因為要操作cond的數(shù)據(jù),所以要加鎖
- lll_lock (cond->__data.__lock, pshared);
- /* Are there any waiters to be woken? */
- if (cond->__data.__total_seq > cond->__data.__wakeup_seq)
- {
- //__wakeup_seq為執(zhí)行sign與timeout次數(shù)的和
- ++cond->__data.__wakeup_seq;
- ++cond->__data.__futex;
- ...
- //喚醒wait的線程
- lll_futex_wake (&cond->__data.__futex, 1, pshared);
- }
- /* We are done. */
- lll_unlock (cond->__data.__lock, pshared);
- return 0;
- }
End
本文對Java簡單介紹了ReentrantLock實現(xiàn)原理,對LockSupport.park底層實現(xiàn)pthread_cond_timedwait機制做了詳細分析。