數(shù)據(jù)分析實戰(zhàn):利用Python對心臟病數(shù)據(jù)集進行分析
我們都很害怕生病,但感冒發(fā)燒這種從小到大的疾病我們已經(jīng)麻木了,因為一星期他就會好,但是隨著長大,各種發(fā)炎、三高、心臟病、冠心病響應(yīng)而生。
心臟病作為一種發(fā)作起來讓人看了就覺得恐怖的疾病,每年不知道奪走多少生命。而那些患病健在的人們也必須在自己后續(xù)的生命里割舍太多東西,以防止心臟病發(fā)作。
沒有得病的時候,我們永遠覺得它離自己很遠。我對心臟病的認(rèn)知就是這樣,我不知道它患病的原因,也不知哪些原因會引起心臟病。而患病后如何保持正常生活等等,一概不知。
今天在kaggle上看到一個心臟病數(shù)據(jù)(數(shù)據(jù)集下載地址和源碼見文末),那么借此深入分析一下。
數(shù)據(jù)集讀取與簡單描述
首先導(dǎo)入library和設(shè)置好超參數(shù),方便后續(xù)分析。
- import numpy as np
- import pandas as pd
- import matplotlib.pyplot as plt
- import seaborn as sns
通過對數(shù)據(jù)集讀取和描述可以得到這兩個表格:
可以看到有303行14列數(shù)據(jù),每列的標(biāo)題是age、sex、cp、……、target。他們就像每次去醫(yī)院的化驗單,非專業(yè)人士很多都不認(rèn)識。所以利用官方的解釋翻譯后含義如下:
- age: 該朋友的年齡
- sex: 該朋友的性別 (1 = 男性, 0 = 女性)
- cp: 經(jīng)歷過的胸痛類型(值1:典型心絞痛,值2:非典型性心絞痛,值3:非心絞痛,值4:無癥狀)
- trestbps: 該朋友的靜息血壓(入院時的毫米汞柱)
- chol: 該朋友的膽固醇測量值,單位 :mg/dl
- fbs: 人的空腹血糖(> 120 mg/dl,1=真;0=假)
- restecg: 靜息心電圖測量(0=正常,1=患有ST-T波異常,2=根據(jù)Estes的標(biāo)準(zhǔn)顯示可能或確定的左心室肥大)
- thalach: 這朋友達到的最大心率
- exang: 運動引起的心絞痛(1=有過;0=沒有)
- oldpeak: ST抑制,由運動引起的相對于休息引起的(“ ST”與ECG圖上的位置有關(guān)。這塊比較專業(yè),可以點這個看一個解讀)
- slope: 最高運動ST段的斜率(值1:上坡,值2:平坦,值3:下坡)
- ca: 螢光顯色的主要血管數(shù)目(0-4)
- thal: 一種稱為地中海貧血的血液疾病(3=正常;6=固定缺陷;7=可逆缺陷)
- target: 心臟病(0=否,1=是)
所以這些信息里都是患病或者健康者的一些身體指標(biāo),并沒有和他是否抽煙、是否熬夜、是否遺傳、是否作息規(guī)律那些東西,因此找不到指導(dǎo)現(xiàn)在我們生活的點,比如說明要戒煙戒酒那些東西。
順手送上一篇知乎鏈接 此外上邊只是我通過原版數(shù)據(jù)集給的解讀翻譯的,如有出錯誤,歡迎糾正
拿到一套數(shù)據(jù)首先是要看看這個數(shù)據(jù)大概面貌~
男女比例
先看看患病比率,男女比例這些常規(guī)的
- countNoDisease = len(data[data.target == 0])
- countHaveDisease = len(data[data.target == 1])
- countfemale = len(data[data.sex == 0])
- countmale = len(data[data.sex == 1])
- print(f'沒患病人數(shù):{countNoDisease }',end=' ,')
- print("沒有得心臟病比率: {:.2f}%".format((countNoDisease / (len(data.target))*100)))
- print(f'有患病人數(shù):{countHaveDisease }',end=' ,')
- print("患有心臟病比率: {:.2f}%".format((countHaveDisease / (len(data.target))*100)))
- print(f'女性人數(shù):{countfemale }',end=' ,')
- print("女性比例: {:.2f}%".format((countfemale / (len(data.sex))*100)))
- print(f'男性人數(shù):{countmale }',end=' ,')
- print("男性比例: {:.2f}%".format((countmale / (len(data.sex))*100)))
上邊代碼得到的答案如下,乍看上去男的多于女的,但前提是這個數(shù)據(jù)只是這個300人的樣本展示,不代表全人類
沒患病人數(shù):138 ,沒有得心臟病比率: 45.54%
有患病人數(shù):165 ,患有心臟病比率: 54.46%
女性人數(shù):96 ,女性比例: 31.68%
男性人數(shù):207 ,男性比例: 68.32%
除了用餅圖看這個面貌,還可以同時看一下
- fig, ax =plt.subplots(1,3) #2個子區(qū)域
- fig.set_size_inches(w=15,h=5) # 設(shè)置畫布大小
- sns.countplot(x="sex", data=data,ax=ax[0])
- plt.xlabel("性別 (0 = female, 1= male)")
- sns.countplot(x="target", data=data,ax=ax[1])
- plt.xlabel("是否患病 (0 = 未患病, 1= 患病)")
- sns.swarmplot(x='sex',y='age',hue='target',data=data,ax=ax[2])
- plt.xlabel("性別 (0 = female, 1= male)")
- plt.show()
從這三聯(lián)圖可以看到男性1多余女性0,患病target1多于未患病0,在年齡分布提琴圖里可以看到女性患者比例多于男性患者比例。
其中比列詳細(xì)拆解一下,見下方代碼和圖示:
- pd.crosstab(data.sex,data.target).plot(kind="bar",figsize=(15,6),color=['#30A9DE','#EFDC05' ])
- plt.title('各性別下患病圖示')
- plt.xlabel('性別 (0 = 女性, 1 = 男性)')
- plt.xticks(rotation=0)
- plt.legend(["未患病", "患有心臟病"])
- plt.ylabel('人數(shù)')
- plt.show()
可以看到這個數(shù)據(jù)集中女性患者數(shù)是健康數(shù)的3倍多。留下一個疑問,心臟病女性更容易得嘛?百度了一下,發(fā)現(xiàn)這個問題提問的人不少,但沒有具體很科學(xué)的回答。google也同樣如此??赡芤业竭@個答案需要再去找一找文獻,但不是本文目的,因此沒有去尋找這個真實比例。
在這個數(shù)據(jù)集中,男性多于女性一倍,分別207和96人;患病患者稍微多余未患病患者,患病165,138人。因為年齡可能是連續(xù)的,因此在第三幅圖做年齡、性別、患病關(guān)系圖,單從顏色觀察可發(fā)現(xiàn)在這個數(shù)據(jù)集中,女性患病率大于男性。通過第四圖和統(tǒng)計可以計算得到,男性患病率44.9% ,女性患病率75%。
需要注意,本文得到的患病率只是這個數(shù)據(jù)集的。
年齡和患病關(guān)系
通過以下代碼來看一看:隨著年齡增長患病比率有沒有變化
(現(xiàn)在寫這個文章的時候我才想到,可能即使有變化也沒有意義,還是樣本有限,如果這個樣本空間覆蓋再提升1000倍才能說明一些問題吧——即年齡和患有心臟病的關(guān)系)
- pd.crosstab(data.age,data.target).plot(kind="bar",figsize=(25,8))
- plt.title('患病變化隨年齡分布圖')
- plt.xlabel('歲數(shù)')
- plt.ylabel('比率')
- plt.savefig('heartDiseaseAndAges.png')
- plt.show()
輸出的圖像如下:就這張圖來說37-54歲患病人數(shù)多于未患病人數(shù),年齡再繼續(xù)升高后有沒有這個規(guī)律了,在70+歲后患病人數(shù)又增加,這條僅能作為數(shù)據(jù)展示,不能作為結(jié)論。
數(shù)據(jù)集中還有很多維度可以組合分析,下邊開始進行組合式探索分析
年齡-心率-患病三者關(guān)系
在這個數(shù)據(jù)集中,心率的詞是‘thalach’,所以看年齡、心率、是否患病的關(guān)系。
- # 散點圖
- plt.scatter(x=data.age[data.target==1], y=data.thalach[(data.target==1)], c="red")
- plt.scatter(x=data.age[data.target==0], y=data.thalach[(data.target==0)], c='#41D3BD')
- plt.legend(["患病", "未患病"])
- plt.xlabel("年齡")
- plt.ylabel("最大心率")
- plt.show()
- # 再畫個提琴圖
- sns.violinplot(x=data.target,y=data.trestbps,data=data)
- plt.show()
看到30歲心跳200那個點,嚇我一跳,如果心臟病不是病,那200這個速度太讓人膜拜了。
可以看到的是心跳速度患病的大概集中在140-200bpm之間。這個數(shù)據(jù)比未患病的人普遍高一些,從提琴圖上也可以看到這個值分布比健康人高一些且更集中。
年齡和血壓(trestbps)分布關(guān)系大家都知道體檢的時候血壓是常規(guī)測試項目,那么我想血壓和年齡有什么關(guān)系嗎?有沒有心臟病和年齡有關(guān)系嗎?
來做個圖看一下。并嘗試用不同的顏色區(qū)分。
- plt.scatter(x=data.age[data.target==1], y=data.trestbps[data.target==1], c="#FFA773")
- plt.scatter(x=data.age[data.target==0], y=data.trestbps[data.target==0], c="#8DE0FF")
- plt.legend(["患病",'未患病'])
- plt.xlabel("年齡")
- plt.ylabel("血壓")
- plt.show()
看上去隨著年齡增長,血壓更飄了?從這個結(jié)果可以看到的是,靜息血壓患病人和未患病的人在血壓方面都是均勻分布的,隨著年齡增長也沒有明顯的分層變化。所以并不能直接從靜息血壓很好的判斷出是否患心臟病。
那么血壓與其他什么有關(guān)呢?
比如心率?好,來看看。
血壓(trestbps)和心率(thalach)關(guān)系
血壓、心率這兩個都來自于心臟的動能,相當(dāng)于發(fā)動機力量和發(fā)動機轉(zhuǎn)速。我猜這倆有點關(guān)系,一起看看
- plt.scatter(x=data.thalach[data.target==1], y=data.trestbps[data.target==1], c="#FFA773")
- plt.scatter(x=data.thalach[data.target==0], y=data.trestbps[data.target==0], c="#8DE0FF")
- plt.legend(["患病",'未患病'])
- plt.xlabel("心率")
- plt.ylabel("血壓")
- plt.show()
現(xiàn)實情況是,這個樣本集中,除了能顯示出患病新率高這個已有結(jié)果外,血壓和心率沒有相關(guān)性。
胸痛類型和心臟病、血壓三者關(guān)系
表中有個數(shù)據(jù)是胸痛類型四個,分別是0123,他們和心臟病有關(guān)系嗎,作圖看看。
此外這塊我要說的是,我上邊的翻譯是1 典型、2非典型、3非心絞痛、4無癥狀。
但是數(shù)據(jù)集中是0123 ,我再kaggle里看了很多人的作品,沒有合理解釋這個的,所以這個數(shù)據(jù)我只可視化展示,不分析。
- sns.swarmplot(x='target',y='trestbps',hue='cp',data=data, size=6)
- plt.xlabel('是否患病')
- plt.show()
- fig,ax=plt.subplots(1,2,figsize=(14,5))
- sns.countplot(x='cp',data=data,hue='target',palette='Set3',ax=ax[0])
- ax[0].set_xlabel("胸痛類型")
- data.cp.value_counts().plot.pie(ax=ax[1],autopct='%1.1f%%',explode=[0.01,0.01,0.01,0.01],shadow=True, cmap='Blues')
- ax[1].set_title("胸痛類型")
結(jié)論是:從上圖可以看到的是0類疼痛的人在非患病群體中占大多數(shù),而在患病群體中,123三種胸痛的人占了大部分。
運動引起的心絞痛與患病、心率關(guān)系
承接胸痛類型,運動引起心絞痛與是否患病有沒有關(guān)系呢?與心率有沒有關(guān)系呢?作圖看一下
PS:運動引起心絞痛(exang: 1=有過;0=沒有)
- sns.swarmplot(x='exang',y='thalach',hue='target',data=data, size=6)
- plt.xlabel('有沒有過運動引起心絞痛')
- plt.ylabel('最大心率')
- plt.show()
得到的這個圖像很有意思!
雖然最大心率是入院時候測的,但是在沒有運動引起心絞痛的人中,最大心率集中度比較高,在160-180之間,而他們都患有心臟病。
我推測是:他們有心臟病,運動就難受,所以就不運動,所以根本不會有“運動時產(chǎn)生胸痛”這種問題。
而在運動中產(chǎn)生胸痛的人中(右邊為1的)他們有很多產(chǎn)生過胸痛,這種人心率比較高,在120-150之間集中著,而其中很多人并沒有心臟病,只是心率比較高。
大血管數(shù)量(ca)和血壓(trestbps)、患病關(guān)系
- plt.figure(figsize=(15,5))
- sns.swarmplot(y='trestbps',data=data,x='ca',hue='target',palette='RdBu_r',size=7)
- plt.xlabel('大血管數(shù)量')
- plt.ylabel('靜息血壓')
- plt.show()
- plt.figure(figsize=(15,5))
- sns.catplot(x="ca", y="age", hue="target", kind="swarm", data=data, palette='RdBu_r')
- plt.xlabel('大血管顯色數(shù)量')
- plt.ylabel('年齡'
這個血管數(shù)量指銀光顯色。具體醫(yī)學(xué)含義沒搜到,所以不分析。只是為0的和患病有很大的相關(guān)性
年齡(age)和膽固醇(chol)關(guān)系
在我初高中的時候,我媽媽告訴我說,每天雞蛋黃不要超過兩個,不然會引起膽固醇高,那時候身體健康,從來不信這些話。我后來上大學(xué)了連每天一個都沒保證住,但我記住了這句話,所以看到膽固醇三個字會想起這個家庭教育哈哈。
膽固醇側(cè)面反映了血脂,那么下邊生成一下膽固醇、年齡、患病三者關(guān)系散點圖。為了區(qū)分,這次我又換了個顏色。
- plt.scatter(x=data.age[data.target==1], y=data.chol[data.target==1], c="orange")
- plt.scatter(x=data.age[data.target==0], y=data.chol[data.target==0], c="green")
- plt.legend(["患病",'未患病'])
- plt.xlabel("年齡")
- plt.ylabel("膽固醇")
- plt.show()
- # 箱型圖
- sns.boxplot(x=data.target,y=data.chol,data=data)
在這個樣本集中,患病者和非患病者膽固醇含量分布沒有明顯的分層現(xiàn)象,箱型圖顯示結(jié)果是合理上下限是一樣的,只是25%、50%、75%三條線患病的人稍微稍微低一些。
結(jié)論就是膽固醇并不能直接反映有沒有心臟病這件事。
相關(guān)性分析
分析了很多,那么哪些和患病相關(guān)的,而數(shù)據(jù)間又有啥關(guān)系呢?做個圖看看,顏色越綠越相關(guān),越紅越負(fù)相關(guān)
- plt.figure(figsize=(15,10))
- ax= sns.heatmap(data.corr(),cmap=plt.cm.RdYlBu_r , annot=True ,fmt='.2f')
- a,b =ax.get_ylim()
- ax.set_ylim(a+0.5,b-0.5)
圖像很好看對不對,只看最后一行,是否患病和cp、thalach、slope正相關(guān),和exang、oldpeak、ca、thal等負(fù)相關(guān)。
本篇分析了心臟病數(shù)據(jù)集中的部分內(nèi)容,14列其實有非常多的組合方式去分析。此外本文沒有用到模型,只是數(shù)據(jù)可視化的方式進行簡要分析。
本文中由于圖片過大,在手機瀏覽可能看不清楚,故開源了代碼,歡迎大家自己動手可視化試試。