玩轉(zhuǎn)Java8的Stream之函數(shù)式接口
函數(shù)式接口是伴隨著Stream的誕生而出現(xiàn)的,Java8Stream 作為函數(shù)式編程的一種具體實現(xiàn),開發(fā)者無需關(guān)注怎么做,只需知道要做什么,各種操作符配合簡潔明了的函數(shù)式接口給開發(fā)者帶來了簡單快速處理數(shù)據(jù)的體驗。
函數(shù)式接口
什么是函數(shù)式接口?簡單來說就是只有一個抽象函數(shù)的接口。為了使得函數(shù)式接口的定義更加規(guī)范,java8 提供了@FunctionalInterface 注解告訴編譯器在編譯器去檢查函數(shù)式接口的合法性,以便在編譯器在編譯出錯時給出提示。為了更加規(guī)范定義函數(shù)接口,給出如下函數(shù)式接口定義規(guī)則:
- 有且僅有一個抽象函數(shù)
- 必須要有@FunctionalInterface 注解
- 可以有默認方法
可以看出函數(shù)式接口的編寫定義非常簡單,不知道大家有沒有注意到,其實我們經(jīng)常會用到函數(shù)式接口,如Runnable 接口,它就是一個函數(shù)式接口:
- @FunctionalInterface
- public interface Runnable {
- /**
- * When an object implementing interface <code>Runnable</code> is used
- * to create a thread, starting the thread causes the object's
- * <code>run</code> method to be called in that separately executing
- * thread.
- * <p>
- * The general contract of the method <code>run</code> is that it may
- * take any action whatsoever.
- *
- * @see java.lang.Thread#run()
- */
- public abstract void run();
- }
過去我們會使用匿名內(nèi)部類來實現(xiàn)線程的執(zhí)行體:
- new Thread(new Runnable() {
- @Override
- public void run() {
- System.out.println("Hello FunctionalInterface");
- }
- }).start();
現(xiàn)在我們使用Lambda 表達式,這里函數(shù)式接口的使用沒有體現(xiàn)函數(shù)式編程思想,這里輸出字符到標準輸出流中,產(chǎn)生了副作用,起到了簡化代碼的作用,當然還有裝B。
- new Thread(()->{
- System.out.println("Hello FunctionalInterface");
- }).start();
Java8 util.function 包下自帶了43個函數(shù)式接口,大體分為以下幾類:
- Consumer 消費接口
- Function 功能接口
- Operator 操作接口
- Predicate 斷言接口
- Supplier 生產(chǎn)接口
其他接口都是在此基礎(chǔ)上變形定制化罷了。
函數(shù)式接口詳細介紹
這里只介紹最基礎(chǔ)的函數(shù)式接口,至于它的變體只要明白了基礎(chǔ)自然就能夠明白。前篇:玩轉(zhuǎn)Java8中的 Stream 之從零認識 Stream
Consumer
消費者接口,就是用來消費數(shù)據(jù)的。
- @FunctionalInterface
- public interface Consumer<T> {
- /**
- * Performs this operation on the given argument.
- *
- * @param t the input argument
- */
- void accept(T t);
- /**
- * Returns a composed {@code Consumer} that performs, in sequence, this
- * operation followed by the {@code after} operation. If performing either
- * operation throws an exception, it is relayed to the caller of the
- * composed operation. If performing this operation throws an exception,
- * the {@code after} operation will not be performed.
- *
- * @param after the operation to perform after this operation
- * @return a composed {@code Consumer} that performs in sequence this
- * operation followed by the {@code after} operation
- * @throws NullPointerException if {@code after} is null
- */
- default Consumer<T> andThen(Consumer<? super T> after) {
- Objects.requireNonNull(after);
- return (T t) -> { accept(t); after.accept(t); };
- }
- }
Consumer 接口中有accept 抽象方法,accept接受一個變量,也就是說你在使用這個函數(shù)式接口的時候,給你提供了數(shù)據(jù),你只要接收使用就可以了;andThen 是一個默認方法,接受一個Consumer 類型,當你對一個數(shù)據(jù)使用一次還不夠爽的時候,你還能再使用一次,當然你其實可以爽無數(shù)次,只要一直使用andThan方法。
Function
何為Function呢?比如電視機,給你帶來精神上的愉悅,但是它需要用電啊,電視它把電轉(zhuǎn)換成了你荷爾蒙,這就是Function,簡單電說,F(xiàn)unction 提供一種轉(zhuǎn)換功能。
- @FunctionalInterface
- public interface Function<T, R> {
- /**
- * Applies this function to the given argument.
- *
- * @param t the function argument
- * @return the function result
- */
- R apply(T t);
- /**
- * Returns a composed function that first applies the {@code before}
- * function to its input, and then applies this function to the result.
- * If evaluation of either function throws an exception, it is relayed to
- * the caller of the composed function.
- *
- * @param <V> the type of input to the {@code before} function, and to the
- * composed function
- * @param before the function to apply before this function is applied
- * @return a composed function that first applies the {@code before}
- * function and then applies this function
- * @throws NullPointerException if before is null
- *
- * @see #andThen(Function)
- */
- default <V> Function<V, R> compose(Function<? super V, ? extends T> before) {
- Objects.requireNonNull(before);
- return (V v) -> apply(before.apply(v));
- }
- /**
- * Returns a composed function that first applies this function to
- * its input, and then applies the {@code after} function to the result.
- * If evaluation of either function throws an exception, it is relayed to
- * the caller of the composed function.
- *
- * @param <V> the type of output of the {@code after} function, and of the
- * composed function
- * @param after the function to apply after this function is applied
- * @return a composed function that first applies this function and then
- * applies the {@code after} function
- * @throws NullPointerException if after is null
- *
- * @see #compose(Function)
- */
- default <V> Function<T, V> andThen(Function<? super R, ? extends V> after) {
- Objects.requireNonNull(after);
- return (T t) -> after.apply(apply(t));
- }
- /**
- * Returns a function that always returns its input argument.
- *
- * @param <T> the type of the input and output objects to the function
- * @return a function that always returns its input argument
- */
- static <T> Function<T, T> identity() {
- return t -> t;
- }
- }
Function 接口 最主要的就是apply 函數(shù),apply 接受T類型數(shù)據(jù)并返回R類型數(shù)據(jù),就是將T類型的數(shù)據(jù)轉(zhuǎn)換成R類型的數(shù)據(jù),它還提供了compose、andThen、identity 三個默認方法,compose 接受一個Function,andThen也同樣接受一個Function,這里的andThen 與Consumer 的andThen 類似,在apply之后在apply一遍,compose 則與之相反,在apply之前先apply(這兩個apply具體處理內(nèi)容一般是不同的),identity 起到了類似海關(guān)的作用,外國人想要運貨進來,總得交點稅吧,然后貨物才能安全進入中國市場,當然了想不想收稅還是你說了算的:。
Operator
可以簡單理解成算術(shù)中的各種運算操作,當然不僅僅是運算這么簡單,因為它只定義了運算這個定義,但至于運算成什么樣你說了算。由于沒有最基礎(chǔ)的Operator,這里將通過 BinaryOperator、IntBinaryOperator來理解Operator 函數(shù)式接口,先從簡單的IntBinaryOperator開始。
IntBinaryOperator
從名字可以知道,這是一個二元操作,并且是Int 類型的二元操作,那么這個接口可以做什么呢,除了加減乘除,還可以可以實現(xiàn)平方(兩個相同int 數(shù)操作起來不就是平方嗎),還是先看看它的定義吧:
- @FunctionalInterface
- public interface IntBinaryOperator {
- /**
- * Applies this operator to the given operands.
- *
- * @param left the first operand
- * @param right the second operand
- * @return the operator result
- */
- int applyAsInt(int left, int right);
- }
IntBinaryOperator 接口內(nèi)只有一個applyAsInt 方法,其接收兩個int 類型的參數(shù),并返回一個int 類型的結(jié)果,其實這個跟Function 接口的apply 有點像,但是這里限定了,只能是int類型。
BinaryOperator
BinaryOperator 二元操作,看起來它和IntBinaryOperator 是父子關(guān)系,實際上這兩者沒有半點關(guān)系,但他們在功能上還是有相似之處的:
- @FunctionalInterface
- public interface BinaryOperator<T> extends BiFunction<T,T,T> {
- /**
- * Returns a {@link BinaryOperator} which returns the lesser of two elements
- * according to the specified {@code Comparator}.
- *
- * @param <T> the type of the input arguments of the comparator
- * @param comparator a {@code Comparator} for comparing the two values
- * @return a {@code BinaryOperator} which returns the lesser of its operands,
- * according to the supplied {@code Comparator}
- * @throws NullPointerException if the argument is null
- */
- public static <T> BinaryOperator<T> minBy(Comparator<? super T> comparator) {
- Objects.requireNonNull(comparator);
- return (a, b) -> comparator.compare(a, b) <= 0 ? a : b;
- }
- /**
- * Returns a {@link BinaryOperator} which returns the greater of two elements
- * according to the specified {@code Comparator}.
- *
- * @param <T> the type of the input arguments of the comparator
- * @param comparator a {@code Comparator} for comparing the two values
- * @return a {@code BinaryOperator} which returns the greater of its operands,
- * according to the supplied {@code Comparator}
- * @throws NullPointerException if the argument is null
- */
- public static <T> BinaryOperator<T> maxBy(Comparator<? super T> comparator) {
- Objects.requireNonNull(comparator);
- return (a, b) -> comparator.compare(a, b) >= 0 ? a : b;
- }
- }
BinaryOperator 是 BiFunction 生的,而IntBinaryOperator 是從石頭里蹦出來的,BinaryOperator 自身定義了minBy、maxBy默認方法,并且參數(shù)都是Comparator,就是根據(jù)傳入的比較器的比較規(guī)則找出最小最大的數(shù)據(jù)。
Predicate
斷言、判斷,對輸入的數(shù)據(jù)根據(jù)某種標準進行評判,最終返回boolean值:
- @FunctionalInterface
- public interface Predicate<T> {
- /**
- * Evaluates this predicate on the given argument.
- *
- * @param t the input argument
- * @return {@code true} if the input argument matches the predicate,
- * otherwise {@code false}
- */
- boolean test(T t);
- /**
- * Returns a composed predicate that represents a short-circuiting logical
- * AND of this predicate and another. When evaluating the composed
- * predicate, if this predicate is {@code false}, then the {@code other}
- * predicate is not evaluated.
- *
- * <p>Any exceptions thrown during evaluation of either predicate are relayed
- * to the caller; if evaluation of this predicate throws an exception, the
- * {@code other} predicate will not be evaluated.
- *
- * @param other a predicate that will be logically-ANDed with this
- * predicate
- * @return a composed predicate that represents the short-circuiting logical
- * AND of this predicate and the {@code other} predicate
- * @throws NullPointerException if other is null
- */
- default Predicate<T> and(Predicate<? super T> other) {
- Objects.requireNonNull(other);
- return (t) -> test(t) && other.test(t);
- }
- /**
- * Returns a predicate that represents the logical negation of this
- * predicate.
- *
- * @return a predicate that represents the logical negation of this
- * predicate
- */
- default Predicate<T> negate() {
- return (t) -> !test(t);
- }
- /**
- * Returns a composed predicate that represents a short-circuiting logical
- * OR of this predicate and another. When evaluating the composed
- * predicate, if this predicate is {@code true}, then the {@code other}
- * predicate is not evaluated.
- *
- * <p>Any exceptions thrown during evaluation of either predicate are relayed
- * to the caller; if evaluation of this predicate throws an exception, the
- * {@code other} predicate will not be evaluated.
- *
- * @param other a predicate that will be logically-ORed with this
- * predicate
- * @return a composed predicate that represents the short-circuiting logical
- * OR of this predicate and the {@code other} predicate
- * @throws NullPointerException if other is null
- */
- default Predicate<T> or(Predicate<? super T> other) {
- Objects.requireNonNull(other);
- return (t) -> test(t) || other.test(t);
- }
- /**
- * Returns a predicate that tests if two arguments are equal according
- * to {@link Objects#equals(Object, Object)}.
- *
- * @param <T> the type of arguments to the predicate
- * @param targetRef the object reference with which to compare for equality,
- * which may be {@code null}
- * @return a predicate that tests if two arguments are equal according
- * to {@link Objects#equals(Object, Object)}
- */
- static <T> Predicate<T> isEqual(Object targetRef) {
- return (null == targetRef)
- ? Objects::isNull
- : object -> targetRef.equals(object);
- }
- }
Predicate的test 接收T類型的數(shù)據(jù),返回 boolean 類型,即對數(shù)據(jù)進行某種規(guī)則的評判,如果符合則返回true,否則返回false;Predicate接口還提供了 and、negate、or,與 取反 或等,isEqual 判斷兩個參數(shù)是否相等等默認函數(shù)。
Supplier
生產(chǎn)、提供數(shù)據(jù):
- @FunctionalInterface
- public interface Supplier<T> {
- /**
- * Gets a result.
- *
- * @return a result
- */
- T get();
- }
非常easy,get方法返回一個T類數(shù)據(jù),可以提供重復(fù)的數(shù)據(jù),或者隨機種子都可以,就這么簡單。
函數(shù)式接口實戰(zhàn)
Consumer
Consumer 用的太多了,不想說太多,如下:
- public class Main {
- public static void main(String[] args) {
- Stream.of(1,2,3,4,5,6)
- .forEach(integer -> System.out.println(integer)); //輸出1,2,3,4,5,6
- }
- }
這里使用標準輸出,還是產(chǎn)生了副作用,但是這種程度是可以允許的
Function
1.轉(zhuǎn)換,將字符串轉(zhuǎn)成長度
- public class Main {
- public static void main(String[] args) {
- Stream.of("hello","FunctionalInterface")
- .map(e->e.length())
- .forEach(System.out::println);
- }
- }
2.運算
- public class FunctionTest {
- public static void main(String[] args) {
- public static void main(String[] args) {
- Function<Integer, Integer> square = integer -> integer * integer; //定義平方運算
- List<Integer> list = new ArrayList<>();
- list.add(1);
- list.add(2);
- list.add(3);
- list.add(4);
- list.stream()
- .map(square.andThen(square)) //四次方
- .forEach(System.out::println);
- System.out.println("------");
- list.stream()
- .map(square.compose(e -> e - 1)) //減一再平方
- .forEach(System.out::println);
- System.out.println("------");
- list.stream().map(square.andThen(square.compose(e->e/2))) //先平方然后除2再平方
- .forEach(System.out::println);
- }
- }
結(jié)果如圖:
Operator
1.BinaryOperator
這里實現(xiàn)找最大值:
- public class BinaryOperatorTest {
- public static void main(String[] args) {
- Stream.of(2,4,5,6,7,1)
- .reduce(BinaryOperator.maxBy(Comparator.comparingInt(Integer::intValue))).ifPresent(System.out::println);
- }
- }
Comparator 后期會講到
2.IntOperator
這里實現(xiàn)累加功能:
- public class BinaryOperatorTest {
- public static void main(String[] args) {
- IntBinaryOperator intBinaryOperator = (e1, e2)->e1+e2; //定義求和二元操作
- IntStream.of(2,4,5,6,7,1)
- .reduce(intBinaryOperator).ifPresent(System.out::println);
- }
- }
Predicate
篩選出大于0最小的兩個數(shù)
- public class Main {
- public static void main(String[] args) {
- IntStream.of(200,45,89,10,-200,78,94)
- .filter(e->e>0) //過濾小于0的數(shù)
- .sorted() //自然順序排序
- .limit(2) //取前兩個
- .forEach(System.out::println);
- }
- }
Supplier
這里一直生產(chǎn)2這個數(shù)字,為了能停下來,使用limit
- public class Main {
- public static void main(String[] args) {
- Stream.generate(()->2)
- .limit(10)
- .forEach(System.out::println);
- }
- }
如圖:
總結(jié)
Java8的Stream 基本上都是使用util.function包下的函數(shù)式接口來實現(xiàn)函數(shù)式編程的,而函數(shù)式接口也就只分為 Function、Operator、Consumer、Predicate、Supplier 這五大類,只要能理解掌握最基礎(chǔ)的五大類用法,其他變種也能觸類旁通。