圖神經(jīng)網(wǎng)絡(luò)快速爆發(fā),最新進(jìn)展都在這里了
近年來,圖神經(jīng)網(wǎng)絡(luò)(GNNs)發(fā)展迅速,最近的會議上發(fā)表了大量相關(guān)的研究論文。本文作者正在整理一個GNN的簡短介紹和最新研究報(bào)告的摘要。希望這對任何準(zhǔn)備進(jìn)入該領(lǐng)域或試圖趕上最新技術(shù)進(jìn)展的人有所幫助。
什么是圖神經(jīng)網(wǎng)絡(luò)?
圖是一種包含節(jié)點(diǎn)(頂點(diǎn))的數(shù)據(jù)類型,這些節(jié)點(diǎn)(頂點(diǎn))通過邊相互連接,邊可以是有向的,也可以是無向的。每個節(jié)點(diǎn)都有一組特征(這些特征可以表示節(jié)點(diǎn)的屬性,也可以是一個熱編碼(One-hot)信息),而邊定義了節(jié)點(diǎn)之間的關(guān)系。
在典型的GNN中,消息傳遞是由邊在相鄰節(jié)點(diǎn)之間上執(zhí)行的。直觀地說,消息是信息的神經(jīng)編碼,它從一個節(jié)點(diǎn)傳遞到與其連接的鄰居節(jié)點(diǎn)。在任何神經(jīng)層,節(jié)點(diǎn)的表示都是通過將其所有鄰居的消息聚合到當(dāng)前節(jié)點(diǎn)來計(jì)算的。經(jīng)過多輪消息傳遞,可以獲得每個節(jié)點(diǎn)的向量表示,可以解釋為一種既描述節(jié)點(diǎn)特征信息又描述節(jié)點(diǎn)周圍鄰域圖結(jié)構(gòu)的嵌入表示。
GNN最新論文簡介
1、XGNN:Towards Model-Level Explanations of Graph Neural Networks
使用神經(jīng)網(wǎng)絡(luò)的一個主要問題是它們常被當(dāng)作黑匣子。由于缺乏神經(jīng)決策背后的原因,它們不太可能用于一些關(guān)鍵性決策的情況。當(dāng)前的方法使用梯度、稀疏和神經(jīng)網(wǎng)絡(luò)在前向傳遞過程中產(chǎn)生的激活用于解釋其輸出。然而,這并不是一個非常有效的方法,而且對于GNNs來說也是非常困難的。
這篇發(fā)表在KDD2020上的論文使用了一種新的方法XGNN,通過結(jié)合生成性方法與強(qiáng)化學(xué)習(xí)來解決這個問題。這種方法可以用來獲取信息進(jìn)行理解、驗(yàn)證,甚至提高訓(xùn)練好的GNN模型。
論文解析:
https://crossminds.ai/video/5f3375a63a683f9107fc6b72/
2、Neural Dynamics on Complex Networks
本文解決了復(fù)雜網(wǎng)絡(luò)中連續(xù)時間動態(tài)捕捉的問題。作者提出了一種將常微分方程(ODEs)與GNNs相結(jié)合的方法來有效地模擬系統(tǒng)結(jié)構(gòu)和動力學(xué),從而更好地理解、預(yù)測和控制復(fù)雜網(wǎng)絡(luò)。
論文解析:
https://crossminds.ai/video/5f3375a13a683f9107fc6b34/
3、Competitive Analysis for Points of Interest
接下來這篇論文是來自于Baidu Research,它是GNNs的一個實(shí)際應(yīng)用,對在提供類似產(chǎn)品/服務(wù)(稱為興趣點(diǎn),poi)的相鄰企業(yè)實(shí)體之間建立消費(fèi)者選擇模型。為了預(yù)測poi之間的競爭關(guān)系,開發(fā)了一個基于GNN的深度學(xué)習(xí)框架DeepR,它集成了poi的異構(gòu)用戶行為數(shù)據(jù)、業(yè)務(wù)評論和地圖搜索數(shù)據(jù)。
論文解析:
https://crossminds.ai/video/5f3375a13a683f9107fc6b31/
4、Comprehensive Information Integration Modeling Framework for Video Titling
阿里巴巴集團(tuán)的這篇文章旨在利用消費(fèi)者產(chǎn)生的大量產(chǎn)品評論視頻,更好地了解他們的偏好,并向潛在客戶推薦相關(guān)視頻。這些視頻的一個主要問題是沒有正確標(biāo)記。因此,論文提出了一種基于主題層次的、基于交互因素的二級視頻摘要生成方法。
論文解析:
https://crossminds.ai/video/5f3369730576dd25aef288a8/
5、Knowing Your FATE:Explanations for User Engagement Prediction on Social Apps
Snapchat團(tuán)隊(duì)的這篇文章探討了使用GNNs的社交媒體應(yīng)用程序中用戶的參與度。它提出了一個端到端的神經(jīng)網(wǎng)絡(luò)框架來預(yù)測用戶參與度,這些因素包括好友數(shù)量和質(zhì)量、用戶發(fā)布內(nèi)容的相關(guān)性、用戶行為和時間因素。這是GNNs最直觀的應(yīng)用之一。
論文解析:
https://crossminds.ai/video/5f405f57819ad96745f802ba/
下面是CVPR/KDD/ECCV/ICML更多的關(guān)于圖卷積網(wǎng)絡(luò)的論文:
- [CVPR 2020] Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud
- [CVPR 2020] Geometrically Principled Connections in Graph Neural Networks [CVPR 2020] SuperGlue: Learning Feature Matching With Graph Neural Networks
- [CVPR 2020] Learning Multi-View Camera Relocalization With Graph Neural Networks
- [CVPR 2020] Multi-Modal Graph Neural Network for Joint Reasoning on Vision and Scene Text
- [CVPR 2020] Social-STGCNN: A Social Spatio-Temporal Graph Convolutional Neural Network for Human Trajectory
- [CVPR 2020] Dynamic Multiscale Graph Neural Networks for 3D Skeleton Based Human Motion Prediction
- [CVPR 2020] Dynamic Graph Message Passing Networks
- [ECCV 2020] Graph convolutional networks for learning with few clean and many noisy labels
- [ICML 2020] When Spectral Domain Meets Spatial Domain in Graph Neural Networks
- [KDD 2020] Graph Structural-topic Neural Network
- [KDD 2020] Towards Deeper Graph Neural Networks
- [KDD 2020] Redundancy-Free Computation for Graph Neural Networks
- [KDD 2020] TinyGNN: Learning Efficient Graph Neural Networks
- [KDD 2020] PolicyGNN: Aggregation Optimization for Graph Neural Networks [KDD 2020] Residual Correlation in Graph Neural Network Regression
- [KDD 2020] Spotlight: Non-IID Graph Neural Networks
- [KDD 2020] XGNN: Towards Model-Level Explanations of Graph Neural Networks
- [KDD 2020] Dynamic Heterogeneous Graph Neural Network for Real-time Event Prediction
- [KDD 2020] Handling Information Loss of Graph Neural Networks for Session-based Recommendation
- [KDD 2020] Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks
- [KDD 2020] GPT-GNN: Generative Pre-Training of Graph Neural Networks
- [KDD 2020] Graph Structure Learning for Robust Graph Neural Networks
- [KDD 2020] Minimal Variance Sampling with Provable Guarantees for Fast Training of Graph Neural Networks
- [KDD 2020] A Framework for Recommending Accurate and Diverse Items Using Bayesian Graph Convolutional Neural Networks
- [KDD 2020] Competitive Analysis for Points of Interest
- [KDD 2020] Knowing your FATE: Explanations for User Engagement Prediction on Social Apps
- [KDD 2020] GHashing: Semantic Graph Hashing for Approximate Similarity Search in Graph Databases
- [KDD 2020] Comprehensive Information Integration Modeling Framework for Video Titling