自拍偷在线精品自拍偷,亚洲欧美中文日韩v在线观看不卡

你可能不知道的Python技巧

開發(fā) 后端
有許許多多文章寫了 Python 中的許多很酷的特性,例如變量解包、偏函數(shù)、枚舉可迭代對象,因此在本文中,我將嘗試展示一些我知道的和在使用的,但很少在其它文章提到過的特性。那就開始吧。

[[373799]]

 有許許多多文章寫了 Python 中的許多很酷的特性,例如變量解包、偏函數(shù)、枚舉可迭代對象,但是關(guān)于 Python 還有很多要討論的話題,因此在本文中,我將嘗試展示一些我知道的和在使用的,但很少在其它文章提到過的特性。那就開始吧。

1、對輸入的字符串“消毒”

對用戶輸入的內(nèi)容“消毒”,這問題幾乎適用于你編寫的所有程序。通常將字符轉(zhuǎn)換為小寫或大寫就足夠了,有時你還可以使用正則表達(dá)式來完成工作,但是對于復(fù)雜的情況,還有更好的方法: 

  1. user_input = "This  
  2. string has  some whitespaces...  
  3.  
  4. character_map = {  
  5.  ord(   
  6.  ) :    ,  
  7.  ord(    ) :    ,  
  8.  ord(   
  9.  ) : None  
  10.  
  11. user_input.translate(character_map)  # This string has some whitespaces... " 

在此示例中,你可以看到空格字符“ ”和“ ”被單個空格替換了,而“ ”則被完全刪除。這是一個簡單的示例,但是我們可以更進(jìn)一步,使用unicodedata 庫及其 combining() 函數(shù),來生成更大的重映射表(remapping table),并用它來刪除字符串中所有的重音。

2、對迭代器切片

如果你嘗試直接對迭代器切片,則會得到 TypeError ,提示說該對象不可取下標(biāo)(not subscriptable),但是有一個簡單的解決方案: 

  1. import itertools  
  2. s = itertools.islice(range(50), 10, 20)  # <itertools.islice object at 0x7f70fab88138>  
  3. for val in s:  
  4.  ... 

使用itertools.islice,我們可以創(chuàng)建一個 islice 對象,該對象是一個迭代器,可以生成我們所需的內(nèi)容。但是這有個重要的提醒,即它會消耗掉切片前以及切片對象 islice 中的所有元素。

(譯注:更多關(guān)于迭代器切片的內(nèi)容,可閱讀Python進(jìn)階:迭代器與迭代器切片)

3、跳過可迭代對象的開始

有時候你必須處理某些文件,它們以可變數(shù)量的不需要的行(例如注釋)為開頭。itertools 再次提供了簡單的解決方案: 

  1. string_from_file = "" 
  2. // Author: ...  
  3. // License: ...  
  4. //  
  5. // Date: ...  
  6. Actual content...  
  7. """  
  8. import itertools  
  9. for line in itertools.dropwhile(lambda line:line.startswith("//"), string_from_file.split("  
  10. ")):  
  11.     print(line) 

這段代碼僅會打印在初始的注釋部分之后的內(nèi)容。如果我們只想丟棄迭代器的開頭部分(在此例中是注釋),并且不知道有多少內(nèi)容,那么此方法很有用。

4、僅支持關(guān)鍵字參數(shù)(kwargs)的函數(shù)

當(dāng)需要函數(shù)提供(強(qiáng)制)更清晰的參數(shù)時,創(chuàng)建僅支持關(guān)鍵字參數(shù)的函數(shù),可能會挺有用: 

  1. def test(*, a, b):  
  2.  pass  
  3. test("value for a", "value for b")  # TypeError: test() takes 0 positional arguments...  
  4. test(a="value"b="value 2")  # Works... 

 如你所見,可以在關(guān)鍵字參數(shù)之前,放置單個 * 參數(shù)來輕松解決此問題。如果我們將位置參數(shù)放在 * 參數(shù)之前,則顯然也可以有位置參數(shù)。

5、創(chuàng)建支持 with 語句的對象

我們都知道如何使用 with 語句,例如打開文件或者是獲取鎖,但是我們可以實(shí)現(xiàn)自己的么?是的,我們可以使用__enter__ 和__exit__ 方法來實(shí)現(xiàn)上下文管理器協(xié)議: 

  1. class Connection:  
  2.  def __init__(self):  
  3.   ...  
  4.  def __enter__(self):  
  5.   # Initialize connection...  
  6.  def __exit__(self, type, value, traceback):  
  7.   # Close connection...  
  8. with Connection() as c:  
  9.  # __enter__() executes  
  10.  ...  
  11.  # conn.__exit__() executes 

這是在 Python 中實(shí)現(xiàn)上下文管理的最常見方法,但是還有一種更簡單的方法: 

  1. from contextlib import contextmanager  
  2. @contextmanager  
  3. def tag(name):  
  4.  print(f"<{name}>")  
  5.  yield  
  6.  print(f"</{name}>")  
  7. with tag("h1"):  
  8.  print("This is Title.") 

上面的代碼段使用 contextmanager 裝飾器實(shí)現(xiàn)了內(nèi)容管理協(xié)議。tag 函數(shù)的第一部分(yield 之前)會在進(jìn)入 with 語句時執(zhí)行,然后執(zhí)行 with 的代碼塊,最后會執(zhí)行 tag 函數(shù)的剩余部分。

5、用__slots__節(jié)省內(nèi)存

如果你曾經(jīng)編寫過一個程序,該程序創(chuàng)建了某個類的大量實(shí)例,那么你可能已經(jīng)注意到你的程序突然就需要大量內(nèi)存。那是因?yàn)?Python 使用字典來表示類實(shí)例的屬性,這能使其速度變快,但內(nèi)存不是很高效。通常這不是個問題,但是,如果你的程序遇到了問題,你可以嘗試使用__slots__ : 

  1. class Person:  
  2.     __slots__ = ["first_name", "last_name", "phone"]  
  3.     def __init__(self, first_name, last_name, phone):  
  4.     self.first_name = first_name 
  5.     self.last_name = last_name  
  6.     self.phone = phone 

這里發(fā)生的是,當(dāng)我們定義__slots__屬性時,Python 使用固定大小的小型數(shù)組,而不是字典,這大大減少了每個實(shí)例所需的內(nèi)存。使用__slots__還有一些缺點(diǎn)——我們無法聲明任何新的屬性,并且只能使用在__slots__中的屬性。同樣,帶有__slots__的類不能使用多重繼承。

6、限制CPU和內(nèi)存使用量

如果不是想優(yōu)化程序內(nèi)存或 CPU 使用率,而是想直接將其限制為某個固定數(shù)字,那么 Python 也有一個庫能做到: 

  1. import signal  
  2. import resource  
  3. import os  
  4. # To Limit CPU time  
  5. def time_exceeded(signo, frame):  
  6.  print("CPU exceeded...") 
  7.  raise SystemExit(1)  
  8. def set_max_runtime(seconds):  
  9.  # Install the signal handler and set a resource limit  
  10.  soft, hard = resource.getrlimit(resource.RLIMIT_CPU)  
  11.  resource.setrlimit(resource.RLIMIT_CPU, (seconds, hard))  
  12.  signal.signal(signal.SIGXCPU, time_exceeded)  
  13. # To limit memory usage  
  14. def set_max_memory(size):  
  15.  soft, hard = resource.getrlimit(resource.RLIMIT_AS)  
  16.  resource.setrlimit(resource.RLIMIT_AS, (size, hard)) 

在這里,我們可以看到兩個選項(xiàng),可設(shè)置最大 CPU 運(yùn)行時間和內(nèi)存使用上限。對于 CPU 限制,我們首先獲取該特定資源(RLIMIT_CPU)的軟限制和硬限制,然后通過參數(shù)指定的秒數(shù)和先前獲取的硬限制來設(shè)置它。最后,如果超過 CPU 時間,我們將注冊令系統(tǒng)退出的信號。至于內(nèi)存,我們再次獲取軟限制和硬限制,并使用帶有 size 參數(shù)的setrlimit 和獲取的硬限制對其進(jìn)行設(shè)置。

8、控制可以import的內(nèi)容

某些語言具有非常明顯的用于導(dǎo)出成員(變量、方法、接口)的機(jī)制,例如Golang,它僅導(dǎo)出以大寫字母開頭的成員。另一方面,在 Python 中,所有內(nèi)容都會被導(dǎo)出,除非我們使用__all__ : 

  1. def foo():  
  2.  pass  
  3. def bar(): 
  4.  pass  
  5. __all__ = ["bar"] 

使用上面的代碼段,我們可以限制from some_module import * 在使用時可以導(dǎo)入的內(nèi)容。對于以上示例,通配導(dǎo)入時只會導(dǎo)入 bar。此外,我們可以將__all__ 設(shè)為空,令其無法導(dǎo)出任何東西,并且在使用通配符方式從此模塊中導(dǎo)入時,將引發(fā) AttributeError。

9、比較運(yùn)算符的簡便方法

為一個類實(shí)現(xiàn)所有比較運(yùn)算符可能會很煩人,因?yàn)橛泻芏嗟谋容^運(yùn)算符——__lt__、__le__、__gt__ 或__ge__。但是,如果有更簡單的方法呢?functools.total_ordering 可救場: 

  1. from functools import total_ordering  
  2. @total_ordering  
  3. class Number:  
  4.  def __init__(self, value):  
  5.   self.value = value  
  6.  def __lt__(self, other):  
  7.   return self.value < other.value  
  8.  def __eq__(self, other):  
  9.   return self.value == other.value  
  10. print(Number(20) > Number(3))  
  11. print(Number(1) < Number(5))  
  12. print(Number(15) >= Number(15))  
  13. print(Number(10) <= Number(2)) 

這到底如何起作用的?total_ordering 裝飾器用于簡化為我們的類實(shí)例實(shí)現(xiàn)排序的過程。只需要定義__lt__ 和__eq__,這是最低的要求,裝飾器將映射剩余的操作——它為我們填補(bǔ)了空白。

( 譯注: 原作者的文章分為兩篇,為了方便讀者們閱讀,我特將它們整合在一起,以下便是第二篇的內(nèi)容。)

10、使用slice函數(shù)命名切片

使用大量硬編碼的索引值會很快搞亂維護(hù)性和可讀性。一種做法是對所有索引值使用常量,但是我們可以做得更好: 

  1. # ID   First Name   Last Name  
  2. line_record = "2        John         Smith"  
  3. ID = slice(0, 8)  
  4. FIRST_NAME = slice(9, 21)  
  5. LAST_NAME = slice(22, 27)  
  6. name = f"{line_record[FIRST_NAME].strip()} {line_record[LAST_NAME].strip()}"  
  7. name == "John Smith" 

在此例中,我們可以避免神秘的索引,方法是先使用 slice 函數(shù)命名它們,然后再使用它們。你還可以通過 .start、.stop和 .stop 屬性,來了解 slice 對象的更多信息。

11、在運(yùn)行時提示用戶輸入密碼

許多命令行工具或腳本需要用戶名和密碼才能操作。因此,如果你碰巧寫了這樣的程序,你可能會發(fā)現(xiàn) getpass 模塊很有用: 

  1. import getpass  
  2. user = getpass.getuser()  
  3. password = getpass.getpass()  
  4. # Do Stuff... 

這個非常簡單的包通過提取當(dāng)前用戶的登錄名,可以提示用戶輸入密碼。但是須注意,并非每個系統(tǒng)都支持隱藏密碼。Python 會嘗試警告你,因此切記在命令行中閱讀警告信息。

12、查找單詞/字符串的相近匹配

現(xiàn)在,關(guān)于 Python 標(biāo)準(zhǔn)庫中一些晦澀難懂的特性。如果你發(fā)現(xiàn)自己需要使用Levenshtein distance 【2】之類的東西,來查找某些輸入字符串的相似單詞,那么 Python 的 difflib 會為你提供支持。 

  1. import difflib  
  2. difflib.get_close_matches( appel , [ ape ,  apple ,  peach ,  puppy ], n=2 
  3. # returns [ apple ,  ape ] 

difflib.get_close_matches 會查找最佳的“足夠好”的匹配。在這里,第一個參數(shù)與第二個參數(shù)匹配。我們還可以提供可選參數(shù) n ,該參數(shù)指定要返回的最多匹配結(jié)果。另一個可選的關(guān)鍵字參數(shù) cutoff (默認(rèn)值為 0.6),可以設(shè)置字符串匹配得分的閾值。

13、使用IP地址

如果你必須使用 Python 做網(wǎng)絡(luò)開發(fā),你可能會發(fā)現(xiàn) ipaddress 模塊非常有用。一種場景是從 CIDR(無類別域間路由 Classless Inter-Domain Routing)生成一系列 IP 地址: 

  1. import ipaddress  
  2. net = ipaddress.ip_network( 74.125.227.0/29 )  # Works for IPv6 too  
  3. # IPv4Network( 74.125.227.0/29 )  
  4. for addr in net:  
  5.     print(addr)  
  6. # 74.125.227.0  
  7. # 74.125.227.1  
  8. # 74.125.227.2  
  9. # 74.125.227.3  
  10. # ... 

另一個不錯的功能是檢查 IP 地址的網(wǎng)絡(luò)成員資格: 

  1. ip = ipaddress.ip_address("74.125.227.3")  
  2. ip in net  
  3. # True  
  4. ip = ipaddress.ip_address("74.125.227.12")  
  5. ip in net  
  6. # False 

還有很多有趣的功能,在這里【3】可以找到,我不再贅述。但是請注意,ipaddress 模塊和其它與網(wǎng)絡(luò)相關(guān)的模塊之間只有有限的互通性。例如,你不能將 IPv4Network 實(shí)例當(dāng)成地址字符串——需要先使用 str 轉(zhuǎn)換它們。

14、在Shell中調(diào)試程序崩潰

如果你是一個拒絕使用 IDE,并在 Vim 或 Emacs 中進(jìn)行編碼的人,那么你可能會遇到這樣的情況:擁有在 IDE 中那樣的調(diào)試器會很有用。

你知道嗎?你有一個——只要用python3.8 -i 運(yùn)行你的程序——一旦你的程序終止了, -i 會啟動交互式 shell,在那你可以查看所有的變量和調(diào)用函數(shù)。整潔,但是使用實(shí)際的調(diào)試器(pdb )會如何呢?讓我們用以下程序(script.py ): 

  1. def func():  
  2.     return 0 / 0  
  3. func() 

并使用python3.8 -i script.py運(yùn)行腳本: 

  1. # Script crashes...  
  2. Traceback (most recent call last):  
  3.   File "script.py", line 4, in <module>  
  4.     func()  
  5.   File "script.py", line 2, in func  
  6.     return 0 / 0  
  7. ZeroDivisionError: division by zero  
  8. >>> import pdb  
  9. >>> pdb.pm()  # Post-mortem debugger  
  10. > script.py(2)func()  
  11. -> return 0 / 0  
  12. (Pdb) 

我們看到了崩潰的地方,現(xiàn)在讓我們設(shè)置一個斷點(diǎn): 

  1. def func():  
  2.     breakpoint()  # import pdb; pdb.set_trace()  
  3.     return 0 / 0  
  4. func() 

現(xiàn)在再次運(yùn)行它: 

  1. script.py(3)func()  
  2. -> return 0 / 0  
  3. (Pdb)  # we start here  
  4. (Pdb) step  
  5. ZeroDivisionError: division by zero  
  6. > script.py(3)func()  
  7. -> return 0 / 0  
  8. (Pdb) 

大多數(shù)時候,打印語句和錯誤信息就足以進(jìn)行調(diào)試,但是有時候,你需要四處摸索,以了解程序內(nèi)部正在發(fā)生的事情。在這些情況下,你可以設(shè)置斷點(diǎn),然后程序執(zhí)行時將在斷點(diǎn)處停下,你可以檢查程序,例如列出函數(shù)參數(shù)、表達(dá)式求值、列出變量、或如上所示僅作單步執(zhí)行。

pdb 是功能齊全的 Python shell,理論上你可以執(zhí)行任何東西,但是你還需要一些調(diào)試命令,可在此處【4】找到。

15、在一個類中定義多個構(gòu)造函數(shù)

函數(shù)重載是編程語言(不含 Python)中非常常見的功能。即使你不能重載正常的函數(shù),你仍然可以使用類方法重載構(gòu)造函數(shù): 

  1. import datetime  
  2. class Date:  
  3.     def __init__(self, year, month, day):  
  4.         self.year = year  
  5.         self.month = month  
  6.         self.day = day  
  7.     @classmethod  
  8.     def today(cls):  
  9.         t = datetime.datetime.now()  
  10.         return cls(t.year, t.month, t.day)  
  11. d = Date.today()  
  12. print(f"{d.day}/{d.month}/{d.year}")  
  13. # 14/9/2019 

你可能傾向于將替代構(gòu)造函數(shù)的所有邏輯放入__init__,并使用*args 、**kwargs 和一堆 if 語句,而不是使用類方法來解決。那可能行得通,但是卻變得難以閱讀和維護(hù)。

因此,我建議將很少的邏輯放入__init__,并在單獨(dú)的方法/構(gòu)造函數(shù)中執(zhí)行所有操作。這樣,對于類的維護(hù)者和用戶而言,得到的都是干凈的代碼。

16、使用裝飾器緩存函數(shù)調(diào)用

你是否曾經(jīng)編寫過一種函數(shù),它執(zhí)行昂貴的 I/O 操作或一些相當(dāng)慢的遞歸,而且該函數(shù)可能會受益于對其結(jié)果進(jìn)行緩存(存儲)?如果你有,那么有簡單的解決方案,即使用 functools 的lru_cache : 

  1. from functools import lru_cache  
  2. import requests  
  3. @lru_cache(maxsize=32 
  4. def get_with_cache(url):  
  5.     try:  
  6.         r = requests.get(url)  
  7.         return r.text 
  8.      except:  
  9.         return "Not Found"  
  10. for url in ["https://google.com/",  
  11.             "https://martinheinz.dev/",  
  12.             "https://reddit.com/",  
  13.             "https://google.com/",  
  14.             "https://dev.to/martinheinz",  
  15.             "https://google.com/"]:  
  16.     get_with_cache(url)  
  17. print(get_with_cache.cache_info())  
  18. # CacheInfo(hits=2misses=4maxsize=32currsize=4

在此例中,我們用了可緩存的 GET 請求(最多 32 個緩存結(jié)果)。你還可以看到,我們可以使用 cache_info 方法檢查函數(shù)的緩存信息。裝飾器還提供了 clear_cache 方法,用于使緩存結(jié)果無效。

我還想指出,此函數(shù)不應(yīng)與具有副作用的函數(shù)一起使用,或與每次調(diào)用都創(chuàng)建可變對象的函數(shù)一起使用。

17、在可迭代對象中查找最頻繁出現(xiàn)的元素

在列表中查找最常見的元素是非常常見的任務(wù),你可以使用 for 循環(huán)和字典(map),但是這沒必要,因?yàn)?collections 模塊中有 Counter 類: 

  1. from collections import Counter  
  2. cheese = ["gouda", "brie", "feta", "cream cheese", "feta", "cheddar",  
  3.           "parmesan", "parmesan", "cheddar", "mozzarella", "cheddar", "gouda",  
  4.           "parmesan", "camembert", "emmental", "camembert", "parmesan"]  
  5. cheese_count = Counter(cheese)  
  6. print(cheese_count.most_common(3))  
  7. # Prints: [( parmesan , 4), ( cheddar , 3), ( gouda , 2)] 

實(shí)際上,Counter 只是一個字典,將元素與出現(xiàn)次數(shù)映射起來,因此你可以將其用作普通字典:

pythonprint(cheese_count["mozzarella"])¨K40Kcheese_count["mozzarella"] += 1print(cheese_count["mozzarella"])¨K41K

除此之外,你還可以使用 update(more_words) 方法輕松添加更多元素。Counter 的另一個很酷的特性是你可以使用數(shù)學(xué)運(yùn)算(加法和減法)來組合和減去 Counter 的實(shí)例。 

 

責(zé)任編輯:龐桂玉 來源: 機(jī)器學(xué)習(xí)算法與Python學(xué)習(xí)
相關(guān)推薦

2020-01-29 19:40:36

Python美好,一直在身邊Line

2015-08-13 09:03:14

調(diào)試技巧

2012-11-23 10:57:44

Shell

2022-09-20 11:58:27

NpmNode.js

2024-03-04 00:00:00

Kubernetes技巧API

2019-11-25 14:05:47

Python裝飾器數(shù)據(jù)

2021-02-16 09:02:59

Python代碼技巧

2022-12-09 15:06:26

字符串Intl字符串分割

2022-12-21 08:05:04

字符串分割技巧

2020-11-03 09:51:04

JavaScript開發(fā) 技巧

2017-11-07 21:58:25

前端JavaScript調(diào)試技巧

2017-02-23 19:42:55

AS Android代碼

2021-02-28 08:34:14

CSS outline-off負(fù)值技巧

2019-11-20 10:25:06

sudoLinux

2023-02-27 09:20:24

絕對定位CSS

2023-01-29 09:46:47

Dialog彈窗模態(tài)

2014-04-10 13:15:54

PythonPython技巧

2021-11-01 12:10:56

Python技巧代碼

2021-02-21 06:36:57

運(yùn)算技巧按位

2014-12-08 10:39:15

點(diǎn)贊
收藏

51CTO技術(shù)棧公眾號