化妝品騙得了面部識別技術(shù)?
本文轉(zhuǎn)自雷鋒網(wǎng),如需轉(zhuǎn)載請至雷鋒網(wǎng)官網(wǎng)申請授權(quán)。
內(nèi)蓋夫本古里安大學(xué)的一項新研究發(fā)現(xiàn)計算生成的化妝模式,可以繞過面部識別軟件。數(shù)字和物理應(yīng)用的化妝可以欺騙部分面部識別系統(tǒng),成功率高達(dá)98%。
據(jù)了解,在實驗中,研究人員將20名志愿者列入黑名單,方便系統(tǒng)標(biāo)記身份。然后研究人員使用YouCam Makeup的自拍應(yīng)用程序,根據(jù)面部可識別區(qū)域的熱圖,對面部圖像進(jìn)行數(shù)字化成像。接著化妝師用化妝品在志愿者身上模擬數(shù)字化妝,測試目標(biāo)模型在實際情況下的反應(yīng)。
據(jù)悉,研究人員在一個模擬現(xiàn)實世界的場景中對這一技術(shù)進(jìn)行測試。志愿者會走過配備了兩個攝像頭的走廊,評估系統(tǒng)會在此時進(jìn)行識別。
該研究的主要作者、博士生尼贊·蓋坦表示:“我對這項研究的結(jié)果感到驚訝,化妝師只是依據(jù)圖像中的花樣,把它復(fù)制到人臉上。這種復(fù)制并不精確,但它仍然有效。”
值得一提的是,論文得出的結(jié)論是:“這一技術(shù)在FaceNet模型和LResNet模型上的數(shù)字實驗都取得了100%的成功。在物理實驗中,47.6%的參與者沒有化妝,33.7%的參與者沒有化妝。使用這種方法的人只在1.2%的幀中被識別出來。“
另外,論文還提到:“假如我們在一個黑箱場景中,那么我們就無法訪問目標(biāo)FR模型、其架構(gòu)和任何參數(shù),因此,攻擊者的選擇是在被攝像機(jī)捕獲之前改變他/她的臉。”
有意思的是,研究人員并不是第一個用化妝品欺騙面部識別系統(tǒng)的人。
早在2010年,藝術(shù)家亞當(dāng)·哈維的CV Dazzle項目就展示了一系列旨在挫敗算法的妝容,藝術(shù)家的靈感來自第一次世界大戰(zhàn)中海軍艦艇使用的“炫目”偽裝。
還有很多研究,在通過數(shù)字模擬來繞過面部識別系統(tǒng),比如通過創(chuàng)建模仿他人的“主人臉”。這篇論文引用了一片內(nèi)容為:可以在帽子上貼可打印的貼紙繞過面部識別系統(tǒng),另一項研究則是打印眼鏡框。
雖然這些方法可能會在面部識別算法面前隱藏某人,但它們的副作用是讓你在人群中非常顯眼,比如你試圖去機(jī)場。
有關(guān)人士表示:”我通常不太相信現(xiàn)在的面部識別技術(shù),面部識別這個領(lǐng)域有很多問題。但我認(rèn)為這項技術(shù)正在變得越來越好。”
本文編譯自:https://www.vice.com/en/article/k78v9m/researchers-defeated-advanced-facial-recognition-tech-using-makeup