自拍偷在线精品自拍偷,亚洲欧美中文日韩v在线观看不卡

使用Pytorch和OpenCV實現(xiàn)視頻人臉替換

人工智能
“DeepFaceLab”項目已經(jīng)發(fā)布了很長時間了,作為研究的目的,本文將介紹他的原理,并使用Pytorch和OpenCV創(chuàng)建一個簡化版本。

“DeepFaceLab”項目已經(jīng)發(fā)布了很長時間了,作為研究的目的,本文將介紹他的原理,并使用Pytorch和OpenCV創(chuàng)建一個簡化版本。

本文將分成3個部分,第一部分從兩個視頻中提取人臉并構建標準人臉數(shù)據(jù)集。第二部分使用數(shù)據(jù)集與神經(jīng)網(wǎng)絡一起學習如何在潛在空間中表示人臉,并從該表示中重建人臉圖像。最后部分使用神經(jīng)網(wǎng)絡在視頻的每一幀中創(chuàng)建與源視頻中相同但具有目標視頻中人物表情的人臉。然后將原人臉替換為假人臉,并將新幀保存為新的假視頻。

項目的基本結構(在第一次運行之前)如下所示

├── face_masking.py
├── main.py
├── face_extraction_tools.py
├── quick96.py
├── merge_frame_to_fake_video.py
├── data
│ ├── data_dst.mp4
│ ├── data_src.mp4

main.py是主腳本,data文件夾包含程序需要的的data_dst.mp4和data_src.mp4文件。

提取和對齊-構建數(shù)據(jù)集

在第一部分中,我們主要介紹face_extraction_tools.py文件中的代碼。

因為第一步是從視頻中提取幀,所以需要構建一個將幀保存為JPEG圖像的函數(shù)。這個函數(shù)接受一個視頻的路徑和另一個輸出文件夾的路徑。

 def extract_frames_from_video(video_path: Union[str, Path], output_folder: Union[str, Path], frames_to_skip: int=0) -> None:
    """
    Extract frame from video as a JPG images.
    Args:
        video_path (str | Path): the path to the input video from it the frame will be extracted
        output_folder (str | Path): the folder where the frames will be saved
        frames_to_skip (int): how many frames to skip after a frame which is saved. 0 will save all the frames.
            If, for example, this value is 2, the first frame will be saved, then frame 2 and 3 will be skipped,
            the 4th frame will be saved, and so on.
 
    Returns:
 
    """
 
    video_path = Path(video_path)
    output_folder = Path(output_folder)
 
    if not video_path.exists():
        raise ValueError(f'The path to the video file {video_path.absolute()} is not exist')
    if not output_folder.exists():
        output_folder.mkdir(parents=True)
 
    video_capture = cv2.VideoCapture(str(video_path))
 
    extract_frame_counter = 0
    saved_frame_counter = 0
    while True:
        ret, frame = video_capture.read()
        if not ret:
            break
 
        if extract_frame_counter % (frames_to_skip + 1) == 0:
            cv2.imwrite(str(output_folder / f'{saved_frame_counter:05d}.jpg'), frame, [cv2.IMWRITE_JPEG_QUALITY, 90])
            saved_frame_counter += 1
 
        extract_frame_counter += 1
 
    print(f'{saved_frame_counter} of {extract_frame_counter} frames saved')

函數(shù)首先檢查視頻文件是否存在,以及輸出文件夾是否存在,如果不存在則自動創(chuàng)建。然后使用OpenCV 的videoccapture類來創(chuàng)建一個對象來讀取視頻,然后逐幀保存為輸出文件夾中的JPEG文件。也可以根據(jù)frames_to_skip參數(shù)跳過幀。

然后就是需要構建人臉提取器。該工具應該能夠檢測圖像中的人臉,提取并對齊它。構建這樣一個工具的最佳方法是創(chuàng)建一個FaceExtractor類,其中包含檢測、提取和對齊的方法。

對于檢測部分,我們將使用帶有OpenCV的YuNet。YuNet是一個快速準確的基于cnn的人臉檢測器,可以由OpenCV中的FaceDetectorYN類使用。要創(chuàng)建這樣一個FaceDetectorYN對象,我們需要一個帶有權重的ONNX文件。該文件可以在OpenCV Zoo中找到,當前版本名為“face_detection_yunet_2023mar.onnx”。

我們的init()方法如下:

 def __init__(self, image_size):
        """
        Create a YuNet face detector to get face from image of size 'image_size'. The YuNet model
        will be downloaded from opencv zoo, if it's not already exist.
        Args:
            image_size (tuple): a tuple of (width: int, height: int) of the image to be analyzed
        """
        detection_model_path = Path('models/face_detection_yunet_2023mar.onnx')
        if not detection_model_path.exists():
            detection_model_path.parent.mkdir(parents=True, exist_ok=True)
            url = "https://github.com/opencv/opencv_zoo/blob/main/models/face_detection_yunet/face_detection_yunet_2023mar.onnx"
            print('Downloading face detection model...')
            filename, headers = urlretrieve(url, filename=str(detection_model_path))
            print('Download finish!')
 
        self.detector = cv2.FaceDetectorYN.create(str(detection_model_path), "", image_size)

函數(shù)首先檢查權重文件是否存在,如果不存在,則從web下載。然后使用權重文件和要分析的圖像大小創(chuàng)建FaceDetectorYN對象。檢測方法采用YuNet檢測方法在圖像中尋找人臉

def detect(self, image):
    ret, faces = self.detector.detect(image)
    return ret, faces

YuNet的輸出是一個大小為[num_faces, 15]的2D數(shù)組,包含以下信息:

  • 0-1:邊界框左上角的x, y
  • 2-3:邊框的寬度、高度
  • 4-5:右眼的x, y(樣圖中藍點)
  • 6-7:左眼x, y(樣圖中紅點)
  • 8-9:鼻尖x, y(示例圖中綠色點)
  • 10-11:嘴巴右角的x, y(樣例圖像中的粉色點)
  • 12-13:嘴角左角x, y(樣例圖中黃色點)
  • 14:面部評分

現(xiàn)在已經(jīng)有了臉部位置數(shù)據(jù),我們可以用它來獲得臉部的對齊圖像。這里主要利用眼睛位置的信息。我們希望眼睛在對齊后的圖像中處于相同的水平(相同的y坐標)。

@staticmethod
    def align(image, face, desired_face_width=256, left_eye_desired_coordinate=np.array((0.37, 0.37))):
        """
        Align the face so the eyes will be at the same level
        Args:
            image (np.ndarray): image with face
            face (np.ndarray): face coordinates from the detection step
            desired_face_width (int): the final width of the aligned face image
            left_eye_desired_coordinate (np.ndarray): a length 2 array of values between
              0 and 1 where the left eye should be in the aligned image
 
        Returns:
            (np.ndarray): aligned face image
        """
        desired_face_height = desired_face_width
        right_eye_desired_coordinate = np.array((1 - left_eye_desired_coordinate[0], left_eye_desired_coordinate[1]))
 
        # get coordinate of the center of the eyes in the image
        right_eye = face[4:6]
        left_eye = face[6:8]
 
        # compute the angle of the right eye relative to the left eye
        dist_eyes_x = right_eye[0] - left_eye[0]
        dist_eyes_y = right_eye[1] - left_eye[1]
        dist_between_eyes = np.sqrt(dist_eyes_x ** 2 + dist_eyes_y ** 2)
        angles_between_eyes = np.rad2deg(np.arctan2(dist_eyes_y, dist_eyes_x) - np.pi)
        eyes_center = (left_eye + right_eye) // 2
 
        desired_dist_between_eyes = desired_face_width * (
                    right_eye_desired_coordinate[0] - left_eye_desired_coordinate[0])
        scale = desired_dist_between_eyes / dist_between_eyes
 
        M = cv2.getRotationMatrix2D(eyes_center, angles_between_eyes, scale)
 
        M[0, 2] += 0.5 * desired_face_width - eyes_center[0]
        M[1, 2] += left_eye_desired_coordinate[1] * desired_face_height - eyes_center[1]
 
        face_aligned = cv2.warpAffine(image, M, (desired_face_width, desired_face_height), flags=cv2.INTER_CUBIC)
        return face_aligned

這個方法獲取單張人臉的圖像和信息,輸出圖像的寬度和期望的左眼相對位置。我們假設輸出圖像是平方的,并且右眼的期望位置具有相同的y位置和x位置的1 - left_eye_x。計算兩眼之間的距離和角度,以及兩眼之間的中心點。

最后一個方法是extract方法,它類似于align方法,但沒有轉換,它也返回圖像中人臉的邊界框。

def extract_and_align_face_from_image(input_dir: Union[str, Path], desired_face_width: int=256) -> None:
    """
    Extract the face from an image, align it and save to a directory inside in the input directory
    Args:
        input_dir (str|Path): path to the directory contains the images extracted from a video
        desired_face_width (int): the width of the aligned imaged in pixels
 
    Returns:
 
    """
 
    input_dir = Path(input_dir)
    output_dir = input_dir / 'aligned'
    if output_dir.exists():
        rmtree(output_dir)
    output_dir.mkdir()
 
 
    image = cv2.imread(str(input_dir / '00000.jpg'))
    image_height = image.shape[0]
    image_width = image.shape[1]
 
    detector = FaceExtractor((image_width, image_height))
 
    for image_path in tqdm(list(input_dir.glob('*.jpg'))):
        image = cv2.imread(str(image_path))
 
        ret, faces = detector.detect(image)
        if faces is None:
            continue
 
        face_aligned = detector.align(image, faces[0, :], desired_face_width)
        cv2.imwrite(str(output_dir / f'{image_path.name}'), face_aligned, [cv2.IMWRITE_JPEG_QUALITY, 90])

訓練

對于網(wǎng)絡,我們將使用AutoEncoder。在AutoEncoder中,有兩個主要組件——編碼器和解碼器。編碼器獲取原始圖像并找到它的潛在表示,解碼器利用潛在表示重構原始圖像。

對于我們的任務,要訓練一個編碼器來找到一個潛在的人臉表示和兩個解碼器——一個可以重建源人臉,另一個可以重建目標人臉。

在這三個組件被訓練之后,我們回到最初的目標:創(chuàng)建一個源面部但具有目標表情的圖像。也就是說使用解碼器A和人臉B的圖像。

面孔的潛在空間保留了面部的主要特征,如位置、方向和表情。解碼器獲取這些編碼信息并學習如何構建全臉圖像。由于解碼器A只知道如何構造A類型的臉,因此它從編碼器中獲取圖像B的特征并從中構造A類型的圖像。

在本文中,我們將使用來自原始DeepFaceLab項目的Quick96架構的一個小修改版本。

模型的全部細節(jié)可以在quick96.py文件中。

在我們訓練模型之前,還需要處理數(shù)據(jù)。為了使模型具有魯棒性并避免過擬合,我們還需要在原始人臉圖像上應用兩種類型的增強。第一個是一般的轉換,包括旋轉,縮放,在x和y方向上的平移,以及水平翻轉。對于每個轉換,我們?yōu)閰?shù)或概率定義一個范圍(例如,我們可以用來旋轉的角度范圍),然后從范圍中選擇一個隨機值來應用于圖像。

 random_transform_args = {
    'rotation_range': 10,
    'zoom_range': 0.05,
    'shift_range': 0.05,
    'random_flip': 0.5,
  }
 
 def random_transform(image, rotation_range, zoom_range, shift_range, random_flip):
    """
    Make a random transformation for an image, including rotation, zoom, shift and flip.
    Args:
        image (np.array): an image to be transformed
        rotation_range (float): the range of possible angles to rotate - [-rotation_range, rotation_range]
        zoom_range (float): range of possible scales - [1 - zoom_range, 1 + zoom_range]
        shift_range (float): the percent of translation for x and y
        random_flip (float): the probability of horizontal flip
 
    Returns:
        (np.array): transformed image
    """
    h, w = image.shape[0:2]
    rotation = np.random.uniform(-rotation_range, rotation_range)
    scale = np.random.uniform(1 - zoom_range, 1 + zoom_range)
    tx = np.random.uniform(-shift_range, shift_range) * w
    ty = np.random.uniform(-shift_range, shift_range) * h
    mat = cv2.getRotationMatrix2D((w // 2, h // 2), rotation, scale)
    mat[:, 2] += (tx, ty)
    result = cv2.warpAffine(image, mat, (w, h), borderMode=cv2.BORDER_REPLICATE)
    if np.random.random() < random_flip:
        result = result[:, ::-1]
    return result

第2個是通過使用帶噪聲的插值圖產(chǎn)生的失真。這種扭曲將迫使模型理解人臉的關鍵特征,并使其更加一般化。

def random_warp(image):
    """
    Create a distorted face image and a target undistorted image
    Args:
        image (np.array): image to warp
 
    Returns:
        (np.array): warped version of the image
        (np.array): target image to construct from the warped version
    """
    h, w = image.shape[:2]
 
    # build coordinate map to wrap the image according to
    range_ = np.linspace(h / 2 - h * 0.4, h / 2 + h * 0.4, 5)
    mapx = np.broadcast_to(range_, (5, 5))
    mapy = mapx.T
 
    # add noise to get a distortion of the face while warp the image
    mapx = mapx + np.random.normal(size=(5, 5), scale=5*h/256)
    mapy = mapy + np.random.normal(size=(5, 5), scale=5*h/256)
 
    # get interpolation map for the center of the face with size of (96, 96)
    interp_mapx = cv2.resize(mapx, (int(w / 2 * (1 + 0.25)) , int(h / 2 * (1 + 0.25))))[int(w/2 * 0.25/2):int(w / 2 * (1 + 0.25) - w/2 * 0.25/2), int(w/2 * 0.25/2):int(w / 2 * (1 + 0.25) - w/2 * 0.25/2)].astype('float32')
    interp_mapy = cv2.resize(mapy, (int(w / 2 * (1 + 0.25)) , int(h / 2 * (1 + 0.25))))[int(w/2 * 0.25/2):int(w / 2 * (1 + 0.25) - w/2 * 0.25/2), int(w/2 * 0.25/2):int(w / 2 * (1 + 0.25) - w/2 * 0.25/2)].astype('float32')
 
    # remap the face image according to the interpolation map to get warp version
    warped_image = cv2.remap(image, interp_mapx, interp_mapy, cv2.INTER_LINEAR)
 
    # create the target (undistorted) image
    # find a transformation to go from the source coordinates to the destination coordinate
    src_points = np.stack([mapx.ravel(), mapy.ravel()], axis=-1)
    dst_points = np.mgrid[0:w//2+1:w//8, 0:h//2+1:h//8].T.reshape(-1, 2)
 
    # We want to find a similarity matrix (scale rotation and translation) between the
    # source and destination points. The matrix should have the structure
    # [[a, -b, c],
    # [b, a, d]]
    # so we can construct unknown vector [a, b, c, d] and solve for it using least
    # squares with the source and destination x and y points.
    A = np.zeros((2 * src_points.shape[0], 2))
    A[0::2, :] = src_points # [x, y]
    A[0::2, 1] = -A[0::2, 1] # [x, -y]
    A[1::2, :] = src_points[:, ::-1] # [y, x]
    A = np.hstack((A, np.tile(np.eye(2), (src_points.shape[0], 1)))) # [x, -y, 1, 0] for x coordinate and [y, x, 0 ,1] for y coordinate
    b = dst_points.flatten() # arrange as [x0, y0, x1, y1, ..., xN, yN]
 
    similarity_mat = np.linalg.lstsq(A, b, rcond=None)[0] # get the similarity matrix elements as vector [a, b, c, d]
    # construct the similarity matrix from the result vector of the least squares
    similarity_mat = np.array([[similarity_mat[0], -similarity_mat[1], similarity_mat[2]],
                                [similarity_mat[1], similarity_mat[0], similarity_mat[3]]])
    # use the similarity matrix to construct the target image using affine transformation
    target_image = cv2.warpAffine(image, similarity_mat, (w // 2, h // 2))
 
    return warped_image, target_image

這個函數(shù)有兩個部分,我們首先在面部周圍的區(qū)域創(chuàng)建圖像的坐標圖。有一個x坐標的映射和一個y坐標的映射。mapx和mapy變量中的值是以像素為單位的坐標。然后在圖像上添加一些噪聲,使坐標在隨機方向上移動。我們添加的噪聲,得到了一個扭曲的坐標(像素在隨機方向上移動一點)。然后裁剪了插值后的貼圖,使其包含臉部的中心,大小為96x96像素?,F(xiàn)在我們可以使用扭曲的映射來重新映射圖像,得到一個新的扭曲的圖像。

在第二部分創(chuàng)建未扭曲的圖像,這是模型應該從扭曲的圖像中創(chuàng)建的目標圖像。使用噪聲作為源坐標,并為目標圖像定義一組目標坐標。然后我們使用最小二乘法找到一個相似變換矩陣(尺度旋轉和平移),將其從源坐標映射到目標坐標,并將其應用于圖像以獲得目標圖像。

然后就可以創(chuàng)建一個Dataset類來處理數(shù)據(jù)了。FaceData類非常簡單。它獲取包含src和dst文件夾的文件夾的路徑,其中包含我們在前一部分中創(chuàng)建的數(shù)據(jù),并返回大小為(2 * 96,2 * 96)歸一化為1的隨機源和目標圖像。我們的網(wǎng)絡將得到的是一個經(jīng)過變換和扭曲的圖像,以及源臉和目標臉的目標圖像。所以還需要實現(xiàn)了一個collate_fn

 def collate_fn(self, batch):
        """
        Collate function to arrange the data returns from a batch. The batch returns a list
        of tuples contains pairs of source and destination images, which is the input of this
        function, and the function returns a tuple with 4 4D tensors of the warp and target
        images for the source and destination
        Args:
            batch (list): a list of tuples contains pairs of source and destination images
                as numpy array
 
        Returns:
            (torch.Tensor): a 4D tensor of the wrap version of the source images
            (torch.Tensor): a 4D tensor of the target source images
            (torch.Tensor): a 4D tensor of the wrap version of the destination images
            (torch.Tensor): a 4D tensor of the target destination images
        """
        images_src, images_dst = list(zip(*batch)) # convert list of tuples with pairs of images into tuples of source and destination images
        warp_image_src, target_image_src = get_training_data(images_src, len(images_src))
        warp_image_src = torch.tensor(warp_image_src, dtype=torch.float32).permute(0, 3, 1, 2).to(device)
        target_image_src = torch.tensor(target_image_src, dtype=torch.float32).permute(0, 3, 1, 2).to(device)
        warp_image_dst, target_image_dst = get_training_data(images_dst, len(images_dst))
        warp_image_dst = torch.tensor(warp_image_dst, dtype=torch.float32).permute(0, 3, 1, 2).to(device)
        target_image_dst = torch.tensor(target_image_dst, dtype=torch.float32).permute(0, 3, 1, 2).to(device)
 
        return warp_image_src, target_image_src, warp_image_dst, target_image_dst

當我們從Dataloader對象獲取數(shù)據(jù)時,它將返回一個元組,其中包含來自FaceData對象的源圖像和目標圖像對。collate_fn接受這個結果,并對圖像進行變換和失真,得到目標圖像,并為扭曲的源圖像、目標源圖像、扭曲的目標圖像和目標目標圖像返回四個4D張量。

訓練使用的損失函數(shù)是MSE (L2)損失和DSSIM的組合

訓練的指標和結果如上圖所示

生成視頻

在最后一步就是創(chuàng)建視頻。處理此任務的函數(shù)稱為merge_frame_to_fake_video.py。我們使用MediaPipe創(chuàng)建了facemask類。

當初始化facemask對象時,初始化MediaPipe人臉檢測器。

 class FaceMasking:
    def __init__(self):
        landmarks_model_path = Path('models/face_landmarker.task')
        if not landmarks_model_path.exists():
            landmarks_model_path.parent.mkdir(parents=True, exist_ok=True)
            url = "https://storage.googleapis.com/mediapipe-models/face_landmarker/face_landmarker/float16/latest/face_landmarker.task"
            print('Downloading face landmarks model...')
            filename, headers = urlretrieve(url, filename=str(landmarks_model_path))
            print('Download finish!')
 
        base_options = python_mp.BaseOptions(model_asset_path=str(landmarks_model_path))
        options = vision.FaceLandmarkerOptions(base_options=base_options,
                                                output_face_blendshapes=False,
                                                output_facial_transformation_matrixes=False,
                                                num_faces=1)
        self.detector = vision.FaceLandmarker.create_from_options(options)

這個類也有一個從人臉圖像中獲取掩碼的方法:

 def get_mask(self, image):
        """
        return uint8 mask of the face in image
        Args:
            image (np.ndarray): RGB image with single face
 
        Returns:
            (np.ndarray): single channel uint8 mask of the face
        """
        im_mp = mp.Image(image_format=mp.ImageFormat.SRGB, data=image.astype(np.uint8).copy())
        detection_result = self.detector.detect(im_mp)
 
        x = np.array([landmark.x * image.shape[1] for landmark in detection_result.face_landmarks[0]], dtype=np.float32)
        y = np.array([landmark.y * image.shape[0] for landmark in detection_result.face_landmarks[0]], dtype=np.float32)
 
        hull = np.round(np.squeeze(cv2.convexHull(np.column_stack((x, y))))).astype(np.int32)
        mask = np.zeros(image.shape[:2], dtype=np.uint8)
        mask = cv2.fillConvexPoly(mask, hull, 255)
        kernel = np.ones((7, 7), np.uint8)
        mask = cv2.erode(mask, kernel)
 
        return mask

該函數(shù)首先將輸入圖像轉換為MediaPipe圖像結構,然后使用人臉檢測器查找人臉。然后使用OpenCV找到點的凸包,并使用OpenCV的fillConvexPoly函數(shù)填充凸包的區(qū)域,從而得到一個二進制掩碼。最后,我們應用侵蝕操作來縮小遮蔽。

 def get_mask(self, image):
        """
        return uint8 mask of the face in image
        Args:
            image (np.ndarray): RGB image with single face
 
        Returns:
            (np.ndarray): single channel uint8 mask of the face
        """
        im_mp = mp.Image(image_format=mp.ImageFormat.SRGB, data=image.astype(np.uint8).copy())
        detection_result = self.detector.detect(im_mp)
 
        x = np.array([landmark.x * image.shape[1] for landmark in detection_result.face_landmarks[0]], dtype=np.float32)
        y = np.array([landmark.y * image.shape[0] for landmark in detection_result.face_landmarks[0]], dtype=np.float32)
 
        hull = np.round(np.squeeze(cv2.convexHull(np.column_stack((x, y))))).astype(np.int32)
        mask = np.zeros(image.shape[:2], dtype=np.uint8)
        mask = cv2.fillConvexPoly(mask, hull, 255)
        kernel = np.ones((7, 7), np.uint8)
        mask = cv2.erode(mask, kernel)
 
        return mask

merge_frame_to_fake_video函數(shù)就是將上面所有的步驟整合,創(chuàng)建一個新的視頻對象,一個FaceExtracot對象,一個facemask對象,創(chuàng)建神經(jīng)網(wǎng)絡組件,并加載它們的權重。

def merge_frames_to_fake_video(dst_frames_path, model_name='Quick96', saved_models_dir='saved_model'):
    model_path = Path(saved_models_dir) / f'{model_name}.pth'
    dst_frames_path = Path(dst_frames_path)
    image = Image.open(next(dst_frames_path.glob('*.jpg')))
    image_size = image.size
    result_video = cv2.VideoWriter(str(dst_frames_path.parent / 'fake.mp4'), cv2.VideoWriter_fourcc(*'MJPG'), 30, image.size)
 
    face_extractor = FaceExtractor(image_size)
    face_masker = FaceMasking()
 
    encoder = Encoder().to(device)
    inter = Inter().to(device)
    decoder = Decoder().to(device)
 
    saved_model = torch.load(model_path)
    encoder.load_state_dict(saved_model['encoder'])
    inter.load_state_dict(saved_model['inter'])
    decoder.load_state_dict(saved_model['decoder_src'])
 
    model = torch.nn.Sequential(encoder, inter, decoder)

然后針對目標視頻中的所有幀,找到臉。如果沒有人臉就把畫面寫入視頻。如果有人臉,將其提取出來,轉換為網(wǎng)絡的適當輸入,并生成新的人臉。

對原人臉和新人臉進行遮蔽,利用遮蔽圖像上的矩量找到原人臉的中心。使用無縫克隆,以逼真的方式將新臉代替原來的臉(例如,改變假臉的膚色,以適應原來的臉皮膚)。最后將結果作為一個新的幀放回原始幀,并將其寫入視頻文件。

 frames_list = sorted(dst_frames_path.glob('*.jpg'))
    for ii, frame_path in enumerate(frames_list, 1):
        print(f'Working om {ii}/{len(frames_list)}')
        frame = cv2.imread(str(frame_path))
        retval, face = face_extractor.detect(frame)
        if face is None:
            result_video.write(frame)
            continue
        face_image, face = face_extractor.extract(frame, face[0])
        face_image = face_image[..., ::-1].copy()
        face_image_cropped = cv2.resize(face_image, (96, 96)) #face_image_resized[96//2:96+96//2, 96//2:96+96//2]
        face_image_cropped_torch = torch.tensor(face_image_cropped / 255., dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(device)
        generated_face_torch = model(face_image_cropped_torch)
        generated_face = (generated_face_torch.squeeze().permute(1,2,0).detach().cpu().numpy() * 255).astype(np.uint8)
 
 
        mask_origin = face_masker.get_mask(face_image_cropped)
        mask_fake = face_masker.get_mask(generated_face)
 
        origin_moments = cv2.moments(mask_origin)
        cx = np.round(origin_moments['m10'] / origin_moments['m00']).astype(int)
        cy = np.round(origin_moments['m01'] / origin_moments['m00']).astype(int)
        try:
            output_face = cv2.seamlessClone(generated_face, face_image_cropped, mask_fake, (cx, cy), cv2.NORMAL_CLONE)
        except:
            print('Skip')
            continue
 
        fake_face_image = cv2.resize(output_face, (face_image.shape[1], face_image.shape[0]))
        fake_face_image = fake_face_image[..., ::-1] # change to BGR
        frame[face[1]:face[1]+face[3], face[0]:face[0]+face[2]] = fake_face_image
        result_video.write(frame)
 
    result_video.release()

一幀的結果是這樣的

模型并不完美,面部的某些角度,特別是側面視圖,會導致圖像不那么好,但總體效果不錯。

整合

為了運行整個過程,還需要創(chuàng)建一個主腳本。

 from pathlib import Path
 import face_extraction_tools as fet
 import quick96 as q96
 from merge_frame_to_fake_video import merge_frames_to_fake_video
 
 ##### user parameters #####
 # True for executing the step
 extract_and_align_src = True
 extract_and_align_dst = True
 train = True
 eval = False
 
 model_name = 'Quick96' # use this name to save and load the model
 new_model = False # True for creating a new model even if a model with the same name already exists
 
 ##### end of user parameters #####
 
 # the path for the videos to process
 data_root = Path('./data')
 src_video_path = data_root / 'data_src.mp4'
 dst_video_path = data_root / 'data_dst.mp4'
 
 # path to folders where the intermediate product will be saved
 src_processing_folder = data_root / 'src'
 dst_processing_folder = data_root / 'dst'
 
 # step 1: extract the frames from the videos
 if extract_and_align_src:
    fet.extract_frames_from_video(video_path=src_video_path, output_folder=src_processing_folder, frames_to_skip=0)
 if extract_and_align_dst:
    fet.extract_frames_from_video(video_path=dst_video_path, output_folder=dst_processing_folder, frames_to_skip=0)
 
 # step 2: extract and align face from frames
 if extract_and_align_src:
    fet.extract_and_align_face_from_image(input_dir=src_processing_folder, desired_face_width=256)
 if extract_and_align_dst:
    fet.extract_and_align_face_from_image(input_dir=dst_processing_folder, desired_face_width=256)
 
 # step 3: train the model
 if train:
    q96.train(str(data_root), model_name, new_model, saved_models_dir='saved_model')
 
 # step 4: create the fake video
 if eval:
    merge_frames_to_fake_video(dst_processing_folder, model_name, saved_models_dir='saved_model')

總結 在這篇文章中,我們介紹了DeepFaceLab的運行流程,并使用我們自己的方法實現(xiàn)了該過程。我們首先從視頻中提取幀,然后從幀中提取人臉并對齊它們以創(chuàng)建一個數(shù)據(jù)庫。使用神經(jīng)網(wǎng)絡來學習如何在潛在空間中表示人臉以及如何重建人臉。遍歷了目標視頻的幀,找到了人臉并替換,這就是這個項目的完整流程。

本文只做學習研究,實際項目請參見:

https://github.com/iperov/DeepFaceLab

責任編輯:華軒 來源: DeepHub IMBA
相關推薦

2023-11-14 08:38:43

Golang人臉識別

2014-03-13 11:25:43

C++OpenCV

2022-04-05 20:54:21

OpenCVPython人臉檢測

2022-05-27 09:00:00

機器學習面部結構CGI

2018-06-29 10:15:20

PythonOpenCV人臉識別

2023-07-03 07:40:13

VueGolangweb

2017-08-02 07:36:06

大數(shù)據(jù)PythonOpenCV

2025-02-17 12:00:00

PythonOpenCV提取圖像

2024-07-18 00:00:25

PyTorch神經(jīng)網(wǎng)絡

2018-05-08 14:25:22

Pythondlib人臉檢測

2024-11-01 10:34:45

2024-01-10 16:01:28

2024-01-07 20:20:46

2017-09-22 11:45:10

深度學習OpenCVPython

2024-03-14 08:24:25

MediaCodec解碼播放Android

2013-07-01 10:53:05

2021-08-13 15:07:02

模型人工智能深度學習

2021-05-31 08:40:58

opencv人臉識別Python

2021-11-08 22:59:04

機器學習

2021-10-21 09:00:00

機器學習技術工具
點贊
收藏

51CTO技術棧公眾號