自拍偷在线精品自拍偷,亚洲欧美中文日韩v在线观看不卡

RAG高級優(yōu)化:檢索后處理模塊成竹在胸

人工智能
根據(jù)論文 Lost in the Middle: How Language Models Use Long Contexts,的實驗表明,大模型更容易記憶開頭和結尾的文檔,而對中間部分的文檔記憶能力不強,因此可以根據(jù)召回的文檔和query的相關性進行重排序。

本文我們將介紹在將召回片段送入大模型之前的一些優(yōu)化手段,它們能幫助大模型更好的理解上下文知識,給出最佳的回答:

  • Long-text Reorder
  • Contextual compression
  • Refine
  • Emotion Prompt

Long-text Reorder

根據(jù)論文 Lost in the Middle: How Language Models Use Long Contexts,的實驗表明,大模型更容易記憶開頭和結尾的文檔,而對中間部分的文檔記憶能力不強,因此可以根據(jù)召回的文檔和query的相關性進行重排序。

圖片圖片

核心的代碼可以參考langchain的實現(xiàn):

def _litm_reordering(documents: List[Document]) -> List[Document]:
    """Lost in the middle reorder: the less relevant documents will be at the
    middle of the list and more relevant elements at beginning / end.
    See: https://arxiv.org/abs//2307.03172"""

    documents.reverse()
    reordered_result = []
    for i, value in enumerate(documents):
        if i % 2 == 1:
            reordered_result.append(value)
        else:
            reordered_result.insert(0, value)
    return reordered_result

Contextual compression

本質上利用LLM去判斷檢索之后的文檔和用戶query的相關性,只返回相關度最高的k個。

from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import LLMChainExtractor
from langchain_openai import OpenAI
 
llm = OpenAI(temperature=0)
compressor = LLMChainExtractor.from_llm(llm)
compression_retriever = ContextualCompressionRetriever(
    base_compressor=compressor, base_retriever=retriever
)
 
compressed_docs = compression_retriever.get_relevant_documents(
    "What did the president say about Ketanji Jackson Brown"
)
print(compressed_docs)

Refine

對最后大模型生成的回答進行進一步的改寫,保證回答的準確性。主要涉及提示詞工程,參考的提示詞如下:

The original query is as follows: {query_str}
We have provided an existing answer: {existing_answer}
We have the opportunity to refine the existing answer (only if needed) with some more context below.
------------
{context_msg}
------------
Given the new context, refine the original answer to better answer the query. If the context isn't useful, return the original answer.
Refined Answer:

Emotion Prompt

同樣是提示詞工程的一部分,思路來源于微軟的論文:

Large Language Models Understand and Can Be Enhanced by Emotional Stimuli

在論文中,微軟研究員提出,在提示詞中增加一些情緒情感相關的提示,有助于大模型輸出高質量的回答。

參考提示詞如下:

emotion_stimuli_dict = {
    "ep01": "Write your answer and give me a confidence score between 0-1 for your answer. ",
    "ep02": "This is very important to my career. ",
    "ep03": "You'd better be sure.",
    # add more from the paper here!!
}
 
# NOTE: ep06 is the combination of ep01, ep02, ep03
emotion_stimuli_dict["ep06"] = (
    emotion_stimuli_dict["ep01"]
    + emotion_stimuli_dict["ep02"]
    + emotion_stimuli_dict["ep03"]
)
 
 
from llama_index.prompts import PromptTemplate
 
 
qa_tmpl_str = """\
Context information is below.
---------------------
{context_str}
---------------------
Given the context information and not prior knowledge, \
answer the query.
{emotion_str}
Query: {query_str}
Answer: \
"""
qa_tmpl = PromptTemplate(qa_tmpl_str)
責任編輯:武曉燕 來源: 哎呀AIYA
相關推薦

2011-07-14 16:58:19

CIO虛擬化私有云

2024-09-24 14:32:17

RAG高級優(yōu)化Fusion

2013-05-13 10:35:41

創(chuàng)業(yè)成功創(chuàng)業(yè)創(chuàng)業(yè)者

2015-07-03 10:46:26

PHP程序員工作高效

2025-04-01 09:25:09

2025-03-27 10:22:02

2023-10-14 17:46:17

RAG提示工程GPT-3

2025-03-28 08:00:00

RAG文本檢索大模型

2025-03-10 08:00:00

RAG檢索Reranker

2024-09-19 09:12:50

RAG系統(tǒng)技術

2017-03-07 16:08:36

2024-07-08 12:44:11

2024-09-11 16:36:39

2024-05-20 08:31:33

檢索增強生成LLM大型語言模型

2024-01-29 08:49:36

RAG模型檢索

2024-10-11 09:04:55

2024-05-22 09:38:25

2024-06-19 16:11:22

2024-02-18 09:00:00

RAG工具LlamaIndexChatGPT

2024-08-30 11:27:55

父文檔檢索RAG技術人工智能
點贊
收藏

51CTO技術棧公眾號