自拍偷在线精品自拍偷,亚洲欧美中文日韩v在线观看不卡

機(jī)器學(xué)習(xí) | 從0開(kāi)發(fā)大模型之模型預(yù)訓(xùn)練

人工智能 機(jī)器學(xué)習(xí)
在訓(xùn)練過(guò)程中,通常會(huì)使用 scaler.scale(loss).backward() 來(lái)計(jì)算縮放后的損失的梯度,然后使用 scaler.step(optimizer) 來(lái)更新模型參數(shù),最后使用 scaler.update() 來(lái)更新縮放因子,這樣可以確保訓(xùn)練過(guò)程的穩(wěn)定性和效率。

1、參數(shù)初始化

初始化參數(shù)模板:

from transformers import PretrainedConfig

class MyPretrainConfig(PretrainedConfig):
    model_type = "myllm"

    def __init__(
            self,
            dim: int = 512,
            n_layers: int = 8,
            n_heads: int = 16,
            n_kv_heads: int = 8,
            vocab_size: int = 6400,
            hidden_dim: int = None,
            multiple_of: int = 64,
            norm_eps: float = 1e-5,
            max_seq_len: int = 512,
            dropout: float = 0.0,
            flash_attn: bool = True,
            use_moe: bool = False,
            num_experts_per_tok=2,
            n_routed_experts=4,
            n_shared_experts: bool = True,
            scoring_func='softmax',
            aux_loss_alpha=0.01,
            seq_aux=True,
            norm_topk_prob=True,
            **kwargs,
    ):
        self.dim = dim
        self.n_layers = n_layers
        self.n_heads = n_heads
        self.n_kv_heads = n_kv_heads
        self.vocab_size = vocab_size
        self.hidden_dim = hidden_dim
        self.multiple_of = multiple_of
        self.norm_eps = norm_eps
        self.max_seq_len = max_seq_len
        self.dropout = dropout
        self.flash_attn = flash_attn
        self.num_experts_per_tok = num_experts_per_tok  # 每個(gè)token選擇的專家數(shù)量
        self.n_routed_experts = n_routed_experts        # 總的專家數(shù)量
        self.n_shared_experts = n_shared_experts        # 共享專家
        self.scoring_func = scoring_func                # 評(píng)分函數(shù),默認(rèn)為'softmax'
        self.aux_loss_alpha = aux_loss_alpha            # 輔助損失的alpha參數(shù)
        self.seq_aux = seq_aux                          # 是否在序列級(jí)別上計(jì)算輔助損失
        self.norm_topk_prob = norm_topk_prob            # 是否標(biāo)準(zhǔn)化top-k概率
        super().__init__(**kwargs)

這里依賴 transformers 庫(kù)的 PretrainedConfig,其中 MyPretrainConfig 參數(shù)如下:

  • dim: int = 512:模型的維度,默認(rèn)為 512
  • n_layers: int = 8:模型的層數(shù),默認(rèn)為 8
  • n_heads: int = 16:注意力頭的數(shù)量,默認(rèn)為 16
  • n_kv_heads: int = 8:鍵值對(duì)的頭數(shù),默認(rèn)為 8
  • vocab_size: int = 6400:詞匯表的大小,默認(rèn)為 6400
  • hidden_dim: int = None:隱藏層的維度,默認(rèn)為 None,可以根據(jù)需要設(shè)置
  • multiple_of: int = 64:模型維度必須是這個(gè)值的倍數(shù),默認(rèn)為 64
  • norm_eps: float = 1e-5:歸一化的 epsilon 值,默認(rèn)為 1e-5
  • max_seq_len: int = 512:最大序列長(zhǎng)度,默認(rèn)為 512
  • dropout: float = 0.0:dropout 概率,默認(rèn)為 0.0
  • flash_attn: bool = True:是否使用快速注意力機(jī)制,默認(rèn)為 True
  • num_experts_per_tok=2:每個(gè) token 選擇的專家數(shù)量,默認(rèn)為 2
  • n_routed_experts=4:總的專家數(shù)量,默認(rèn)為 4
  • n_shared_experts: bool = True:是否使用共享專家,默認(rèn)為 True
  • scoring_func='softmax':評(píng)分函數(shù),默認(rèn)為 'softmax'
  • aux_loss_alpha=0.01:輔助損失的 alpha 參數(shù),默認(rèn)為 0.01
  • seq_aux=True:是否在序列級(jí)別上計(jì)算輔助損失,默認(rèn)為 True
  • norm_topk_prob=True:是否標(biāo)準(zhǔn)化 top-k 概率,默認(rèn)為 True
  • **kwargs:接收其他關(guān)鍵字參數(shù),傳遞給父類的構(gòu)造函數(shù)

PretrainedConfig 提供預(yù)訓(xùn)練的參數(shù)模板,由于每個(gè)模型都是不一樣的,所以一般做成配置文件攜帶模型一起發(fā)布。

2、加載預(yù)處理的數(shù)據(jù)

加載上一篇文章已經(jīng)處理好的預(yù)處理數(shù)據(jù),代碼如下:

data_path_list = [f'./pretrain_data.bin']
train_ds = PretrainDataset(data_path_list, max_length=max_seq_len, memmap=True)
train_sampler = None
num_workers = 16  # 可以根據(jù)系統(tǒng)的 CPU 核心數(shù)來(lái)調(diào)整
train_loader = DataLoader(
    train_ds,
    batch_size=batch_size,
    pin_memory=True,
    drop_last=False,
    shuffle=False,
    num_workers=num_workers,
    sampler=train_sampler
)

其中 PretrainDataset 是加載代碼,主要目的是將數(shù)據(jù)轉(zhuǎn)換到內(nèi)存中,方便 DataLoader 獲?。?/p>

class PretrainDataset(Dataset):
    def __init__(self, data_path_lst, max_length=512, memmap=False):
        super().__init__()
        if memmap:
            with open(data_path_lst[0], 'r') as f:
                nbytes = f.seek(0, 2)
                flen = f.tell() // np.dtype('uint16').itemsize
            self.data = np.memmap(data_path_lst[0], dtype=np.dtype('uint16'), shape=(flen // max_length, max_length))
        else:
            data_lst = []
            for data_path in data_path_lst:
                with open(data_path, 'rb') as f:
                    data = np.fromfile(f, dtype=np.uint16)
                    data_lst.append(data)
            data = np.concatenate(data_lst)
            data = data[:max_length * int(len(data) / max_length)]
            self.data = data.reshape(-1, max_length)
        print("memmap:{} train data.shape:{}".format(memmap, self.data.shape))
        print("downloading finished.....")

    def __len__(self):
        return self.data.shape[0]

    def __getitem__(self, index: int):
        sample = self.data[index]
        X = np.array(sample[:-1]).astype(np.int64)
        Y = np.array(sample[1:]).astype(np.int64)

        return torch.from_numpy(X), torch.from_numpy(Y)

其中 Datasetfrom torch.utils.data import Dataset 通用代碼。

3、初始化模型

初始化模型,借鑒 llama2.c 的代碼,路徑:https://github.com/karpathy/llama2.c/blob/master/model.py,使用 Transformerdecoder 階段,即 Decoder-Only,主要是如下邏輯:

  • 初始化:創(chuàng)建tok_embeddings,dropout,layers和CausalLMOutputWithPast等
  • forward:獲取迭代輸出的結(jié)果

具體代碼如下:

class Transformer(PreTrainedModel):
    last_loss: Optional[torch.Tensor]

    def __init__(self, params: MyPretrainConfig):
        super().__init__(params)
        self.params = params
        self.vocab_size = params.vocab_size
        self.n_layers = params.n_layers

        self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
        self.dropout = nn.Dropout(params.dropout)
        self.layers = torch.nn.ModuleList()
        for layer_id in range(params.n_layers):
            self.layers.append(TransformerBlock(layer_id, params))
        self.norm = RMSNorm(params.dim, eps=params.norm_eps)
        self.output = nn.Linear(params.dim, params.vocab_size, bias=False)

        # share the unembedding parameters with the embedding parameters
        self.tok_embeddings.weight = self.output.weight # https://paperswithcode.com/method/weight-tying

        # some useful precompute for the RoPE relative positional embeddings
        freqs_cos, freqs_sin = precompute_freqs_cis(self.params.dim // self.params.n_heads, self.params.max_seq_len)
        self.register_buffer("freqs_cos", freqs_cos, persistent=False)
        self.register_buffer("freqs_sin", freqs_sin, persistent=False)

        # init all weights
        self.apply(self._init_weights)
        # apply special scaled init to the residual projections, per GPT-2 paper
        for pn, p in self.named_parameters():
            if pn.endswith('w3.weight') or pn.endswith('wo.weight'):
                torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * params.n_layers))

        # Initialize attribute for the loss of the last forward call. This will be set if the forward is called with a targets tensor.
        self.last_loss = None
        self.OUT = CausalLMOutputWithPast()

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)

    def forward(self, tokens: torch.Tensor, targets: Optional[torch.Tensor] = None) -> torch.Tensor:
        _bsz, seqlen = tokens.shape
        h = self.tok_embeddings(tokens)
        h = self.dropout(h)
        freqs_cos = self.freqs_cos[:seqlen]
        freqs_sin = self.freqs_sin[:seqlen]

        for layer in self.layers:
            h = layer(h, freqs_cos, freqs_sin)
        h = self.norm(h)

        if targets is not None:
            # if we are given some desired targets also calculate the loss
            logits = self.output(h)
            self.last_loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
        else:
            # inference-time mini-optimization: only forward the output on the very last position
            logits = self.output(h[:, [-1], :]) # note: using list [-1] to preserve the time dim
            self.last_loss = None

        self.OUT.__setitem__('logits', logits)
        self.OUT.__setitem__('last_loss', self.last_loss)
        return self.OUT
...

然后通過(guò)上述模型初始化,并打印模型:

def init_model():
    def count_parameters(model):
        return sum(p.numel() for p in model.parameters() if p.requires_grad)

    model = Transformer(lm_config).to(device)
    print(f'LLM總參數(shù)量:{count_parameters(model) / 1e6:.3f} 百萬(wàn)')
    return model

model = init_model()
print(model)

獲取輸出結(jié)果如下:

Transformer(
  (tok_embeddings): Embedding(6400, 512)
  (dropout): Dropout(p=0.0, inplace=False)
  (layers): ModuleList(
    (0-7): 8 x TransformerBlock(
      (attention): Attention(
        (wq): Linear(in_features=512, out_features=512, bias=False)
        (wk): Linear(in_features=512, out_features=256, bias=False)
        (wv): Linear(in_features=512, out_features=256, bias=False)
        (wo): Linear(in_features=512, out_features=512, bias=False)
        (attn_dropout): Dropout(p=0.0, inplace=False)
        (resid_dropout): Dropout(p=0.0, inplace=False)
      )
      (feed_forward): FeedForward(
        (w1): Linear(in_features=512, out_features=1408, bias=False)
        (w2): Linear(in_features=1408, out_features=512, bias=False)
        (w3): Linear(in_features=512, out_features=1408, bias=False)
        (dropout): Dropout(p=0.0, inplace=False)
      )
      (attention_norm): RMSNorm()
      (ffn_norm): RMSNorm()
    )
  )
  (norm): RMSNorm()
  (output): Linear(in_features=512, out_features=6400, bias=False)
)

模型初始化這里就不詳細(xì)說(shuō)了,這個(gè)系列出一篇文章具體分析 llama2.c 源碼,講述是如何實(shí)現(xiàn)模型創(chuàng)建的。

4、選擇optimizer

執(zhí)行模型初始化后則選擇優(yōu)化器,這里代碼如下:

scaler = torch.cuda.amp.GradScaler(enabled=(dtype == dtype))
optimizer = optim.Adam(model.parameters(), lr=learning_rate)

4.1 GradScaler

GradScaler 在 PyTorch 中的作用是用于自動(dòng)混合精度(Automatic Mixed Precision, AMP)訓(xùn)練時(shí)的梯度縮放,具體來(lái)說(shuō),它的主要功能包括:

  • 防止梯度下溢:在使用混合精度訓(xùn)練時(shí),模型的權(quán)重和激活值可能會(huì)使用較低的精度(如半精度浮點(diǎn)數(shù),F(xiàn)P16)。這可能導(dǎo)致在反向傳播過(guò)程中計(jì)算出的梯度值過(guò)小,從而出現(xiàn)梯度下溢(即梯度變?yōu)榱悖?code style="background-color: rgb(231, 243, 237); padding: 1px 3px; border-radius: 4px; overflow-wrap: break-word; text-indent: 0px; display: inline-block;">GradScaler 會(huì)自動(dòng)調(diào)整梯度的縮放因子,以確保梯度在更新時(shí)不會(huì)下溢;
  • 提高訓(xùn)練速度:使用混合精度可以減少內(nèi)存使用和計(jì)算時(shí)間,從而加速訓(xùn)練過(guò)程,GradScaler 通過(guò)動(dòng)態(tài)調(diào)整縮放因子,幫助在保持?jǐn)?shù)值穩(wěn)定性的同時(shí),充分利用混合精度的優(yōu)勢(shì);
  • 簡(jiǎn)化代碼:使用 GradScaler 可以簡(jiǎn)化混合精度訓(xùn)練的實(shí)現(xiàn),開(kāi)發(fā)者不需要手動(dòng)管理縮放因子和反縮放操作;

在訓(xùn)練過(guò)程中,通常會(huì)使用 scaler.scale(loss).backward() 來(lái)計(jì)算縮放后的損失的梯度,然后使用 scaler.step(optimizer) 來(lái)更新模型參數(shù),最后使用 scaler.update() 來(lái)更新縮放因子,這樣可以確保訓(xùn)練過(guò)程的穩(wěn)定性和效率。

4.2 optimizer

optimizer 在深度學(xué)習(xí)中是一個(gè)非常重要的組件,其主要作用是更新模型的參數(shù),以最小化損失函數(shù),具體來(lái)說(shuō),optimizer 的作用包括:

  • 參數(shù)更新:優(yōu)化器根據(jù)計(jì)算得到的梯度信息來(lái)更新模型的參數(shù)(權(quán)重和偏置),通過(guò)調(diào)整這些參數(shù),優(yōu)化器試圖使模型在訓(xùn)練數(shù)據(jù)上的表現(xiàn)更好;
  • 控制學(xué)習(xí)率:優(yōu)化器通常會(huì)使用學(xué)習(xí)率(learning rate)來(lái)控制每次參數(shù)更新的幅度。學(xué)習(xí)率是一個(gè)超參數(shù),決定了模型在每次迭代中向最優(yōu)解移動(dòng)的步長(zhǎng);
  • 實(shí)現(xiàn)不同的優(yōu)化算法:PyTorch 提供了多種優(yōu)化算法(如 SGD、Adam、RMSprop 等),每種算法都有其獨(dú)特的更新規(guī)則和策略。選擇合適的優(yōu)化器可以影響模型的收斂速度和最終性能;
  • 處理動(dòng)量和自適應(yīng)學(xué)習(xí)率:一些優(yōu)化器(如 Adam 和 RMSprop)使用動(dòng)量和自適應(yīng)學(xué)習(xí)率的策略來(lái)加速收斂和提高穩(wěn)定性。這些策略可以幫助優(yōu)化器在訓(xùn)練過(guò)程中更有效地探索參數(shù)空間;
  • 支持正則化:某些優(yōu)化器可以集成正則化技術(shù)(如 L2 正則化),以防止模型過(guò)擬合;

在下面的迭代訓(xùn)練中,主要作用是根據(jù)損失值調(diào)整優(yōu)化器參數(shù):

# 反向傳播
scaler.scale(loss).backward()

# 梯度剪裁和更新參數(shù)
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
scaler.step(optimizer)
scaler.update()

# 清零梯度
optimizer.zero_grad(set_to_none=True)

5、迭代訓(xùn)練

上述預(yù)處理數(shù)據(jù)加載完,模型執(zhí)行了初始化,然后優(yōu)化器也初始化后,就可以進(jìn)行迭代訓(xùn)練了,不過(guò)迭代訓(xùn)練最重要的是設(shè)置學(xué)習(xí)率,根據(jù)loss動(dòng)態(tài)調(diào)整參數(shù),代碼如下:

for epoch in range(epochs):
    start_time = time.time()

    for step, (X, Y) in enumerate(train_loader):
        X = X.to(device)
        Y = Y.to(device)

        # 設(shè)置學(xué)習(xí)率
        lr = get_lr(epoch * iter_per_epoch + step, epochs * iter_per_epoch)
        for param_group in optimizer.param_groups:
            param_group['lr'] = lr

        # 前向傳播和損失計(jì)算
        with ctx:
            out = model(X, Y)
            loss = out.last_loss

        # 反向傳播
        scaler.scale(loss).backward()

        # 梯度剪裁和更新參數(shù)
        if (step + 1) % accumulation_steps == 0:
            scaler.unscale_(optimizer)
            torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
            scaler.step(optimizer)
            scaler.update()

        # 清零梯度
        optimizer.zero_grad(set_to_none=True)

        if step % 100 == 0:
            spend_time = time.time() - start_time
            print(
                'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.7f} epoch_Time:{}min:'.format(
                    epoch,
                    epochs,
                    step,
                    iter_per_epoch,
                    loss.item(),
                    optimizer.param_groups[-1]['lr'],
                    spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
            model.eval()
            ckp = f'{save_dir}/pretrain_{lm_config.dim}.pth'
            state_dict = model.state_dict()
            torch.save(state_dict, ckp)
            model.train()
  • out = model(X, Y) 前向傳播,計(jì)算輸出
  • scaler.scale(loss).backward() 反向傳播,計(jì)算梯度,執(zhí)行 accumulation_steps 后更新梯度
  • model.eval()model.train() 分別是模型評(píng)估和訓(xùn)練,并保存當(dāng)前模型到指定的文件夾

本人在T4的GPU上,跑了30+小時(shí)完成迭代訓(xùn)練,如果使用CPU時(shí)間會(huì)X4,我在附錄中放了完整的代碼,有興趣的可以跑一下。

附錄

完成代碼:

import os
import time
import math
import warnings
import inspect
import numpy as np
import torch
from torch import optim
from torch.utils.data import DataLoader
from contextlib import nullcontext
from model.model import Transformer
from torch.utils.data import Dataset
from transformers import PretrainedConfig
from typing import Any, Optional, Tuple
import torch.nn.functional as F
from torch import nn
from transformers import PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast
os.environ["TOKENIZERS_PARALLELISM"] = "false"

warnings.filterwarnings('ignore')
basepath = "../datasets"

class MyPretrainConfig(PretrainedConfig):
    model_type = "myllm"

    def __init__(
            self,
            dim: int = 512,
            n_layers: int = 8,
            n_heads: int = 16,
            n_kv_heads: int = 8,
            vocab_size: int = 6400,
            hidden_dim: int = None,
            multiple_of: int = 64,
            norm_eps: float = 1e-5,
            max_seq_len: int = 512,
            dropout: float = 0.0,
            flash_attn: bool = True,
            num_experts_per_tok=2,
            n_routed_experts=4,
            n_shared_experts: bool = True,
            scoring_func='softmax',
            aux_loss_alpha=0.01,
            seq_aux=True,
            norm_topk_prob=True,
            **kwargs,
    ):
        self.dim = dim
        self.n_layers = n_layers
        self.n_heads = n_heads
        self.n_kv_heads = n_kv_heads
        self.vocab_size = vocab_size
        self.hidden_dim = hidden_dim
        self.multiple_of = multiple_of
        self.norm_eps = norm_eps
        self.max_seq_len = max_seq_len
        self.dropout = dropout
        self.flash_attn = flash_attn
        self.num_experts_per_tok = num_experts_per_tok  # 每個(gè)token選擇的專家數(shù)量
        self.n_routed_experts = n_routed_experts        # 總的專家數(shù)量
        self.n_shared_experts = n_shared_experts        # 共享專家
        self.scoring_func = scoring_func                # 評(píng)分函數(shù),默認(rèn)為'softmax'
        self.aux_loss_alpha = aux_loss_alpha            # 輔助損失的alpha參數(shù)
        self.seq_aux = seq_aux                          # 是否在序列級(jí)別上計(jì)算輔助損失
        self.norm_topk_prob = norm_topk_prob            # 是否標(biāo)準(zhǔn)化top-k概率
        super().__init__(**kwargs)

class PretrainDataset(Dataset):
    def __init__(self, data_path_lst, max_length=512, memmap=False):
        super().__init__()
        if memmap:
            with open(data_path_lst[0], 'r') as f:
                nbytes = f.seek(0, 2)
                flen = f.tell() // np.dtype('uint16').itemsize
            self.data = np.memmap(data_path_lst[0], dtype=np.dtype('uint16'), shape=(flen // max_length, max_length))
        else:
            data_lst = []
            for data_path in data_path_lst:
                with open(data_path, 'rb') as f:
                    data = np.fromfile(f, dtype=np.uint16)
                    data_lst.append(data)
            data = np.concatenate(data_lst)
            data = data[:max_length * int(len(data) / max_length)]
            self.data = data.reshape(-1, max_length)
        print("memmap:{} train data.shape:{}".format(memmap, self.data.shape))
        print("downloading finished.....")

    def __len__(self):
        return self.data.shape[0]

    def __getitem__(self, index: int):
        sample = self.data[index]
        X = np.array(sample[:-1]).astype(np.int64)
        Y = np.array(sample[1:]).astype(np.int64)

        return torch.from_numpy(X), torch.from_numpy(Y)
    
class RMSNorm(torch.nn.Module):
    def __init__(self, dim: int, eps: float):
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))

    def _norm(self, x):
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

    def forward(self, x):
        output = self._norm(x.float()).type_as(x)
        return output * self.weight


def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
    freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
    t = torch.arange(end, device=freqs.device)  # type: ignore
    freqs = torch.outer(t, freqs).float()  # type: ignore
    freqs_cos = torch.cos(freqs)  # real part
    freqs_sin = torch.sin(freqs)  # imaginary part
    return freqs_cos, freqs_sin

def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
    ndim = x.ndim
    assert 0 <= 1 < ndim
    assert freqs_cis.shape == (x.shape[1], x.shape[-1])
    shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
    return freqs_cis.view(shape)

def apply_rotary_emb(
    xq: torch.Tensor,
    xk: torch.Tensor,
    freqs_cos: torch.Tensor,
    freqs_sin: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:

    # reshape xq and xk to match the complex representation
    xq_r, xq_i = xq.float().reshape(xq.shape[:-1] + (-1, 2)).unbind(-1)
    xk_r, xk_i = xk.float().reshape(xk.shape[:-1] + (-1, 2)).unbind(-1)

    # reshape freqs_cos and freqs_sin for broadcasting
    freqs_cos = reshape_for_broadcast(freqs_cos, xq_r)
    freqs_sin = reshape_for_broadcast(freqs_sin, xq_r)

    # apply rotation using real numbers
    xq_out_r = xq_r * freqs_cos - xq_i * freqs_sin
    xq_out_i = xq_r * freqs_sin + xq_i * freqs_cos
    xk_out_r = xk_r * freqs_cos - xk_i * freqs_sin
    xk_out_i = xk_r * freqs_sin + xk_i * freqs_cos

    # flatten last two dimensions
    xq_out = torch.stack([xq_out_r, xq_out_i], dim=-1).flatten(3)
    xk_out = torch.stack([xk_out_r, xk_out_i], dim=-1).flatten(3)

    return xq_out.type_as(xq), xk_out.type_as(xk)

def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
    """torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
    bs, slen, n_kv_heads, head_dim = x.shape
    if n_rep == 1:
        return x
    return (
        x[:, :, :, None, :]
        .expand(bs, slen, n_kv_heads, n_rep, head_dim)
        .reshape(bs, slen, n_kv_heads * n_rep, head_dim)
    )

class Attention(nn.Module):
    def __init__(self, args: MyPretrainConfig):
        super().__init__()
        self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
        assert args.n_heads % self.n_kv_heads == 0
        model_parallel_size = 1
        self.n_local_heads = args.n_heads // model_parallel_size
        self.n_local_kv_heads = self.n_kv_heads // model_parallel_size
        self.n_rep = self.n_local_heads // self.n_local_kv_heads
        self.head_dim = args.dim // args.n_heads
        self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False)
        self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
        self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
        self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False)
        self.attn_dropout = nn.Dropout(args.dropout)
        self.resid_dropout = nn.Dropout(args.dropout)
        self.dropout = args.dropout

        # use flash attention or a manual implementation?
        self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
        if not self.flash:
            print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
            mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf"))
            mask = torch.triu(mask, diagonal=1)
            self.register_buffer("mask", mask)

    def forward(
        self,
        x: torch.Tensor,
        freqs_cos: torch.Tensor,
        freqs_sin: torch.Tensor,
    ):
        bsz, seqlen, _ = x.shape

        # QKV
        xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
        xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
        xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
        xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)

        # RoPE relative positional embeddings
        xq, xk = apply_rotary_emb(xq, xk, freqs_cos, freqs_sin)

        # grouped multiquery attention: expand out keys and values
        xk = repeat_kv(xk, self.n_rep)  # (bs, seqlen, n_local_heads, head_dim)
        xv = repeat_kv(xv, self.n_rep)  # (bs, seqlen, n_local_heads, head_dim)

        # make heads into a batch dimension
        xq = xq.transpose(1, 2)  # (bs, n_local_heads, seqlen, head_dim)
        xk = xk.transpose(1, 2)
        xv = xv.transpose(1, 2)

        # flash implementation
        if self.flash:
            output = torch.nn.functional.scaled_dot_product_attention(xq, xk, xv, attn_mask=None, dropout_p=self.dropout if self.training else 0.0, is_causal=True)
        else:
            # manual implementation
            scores = torch.matmul(xq, xk.transpose(2, 3)) / math.sqrt(self.head_dim)
            assert hasattr(self, 'mask')
            scores = scores + self.mask[:, :, :seqlen, :seqlen]   # (bs, n_local_heads, seqlen, cache_len + seqlen)
            scores = F.softmax(scores.float(), dim=-1).type_as(xq)
            scores = self.attn_dropout(scores)
            output = torch.matmul(scores, xv)  # (bs, n_local_heads, seqlen, head_dim)

        # restore time as batch dimension and concat heads
        output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)

        # final projection into the residual stream
        output = self.wo(output)
        output = self.resid_dropout(output)
        return output

class FeedForward(nn.Module):
    def __init__(self, dim: int, hidden_dim: int, multiple_of: int, dropout: float):
        super().__init__()
        if hidden_dim is None:
            hidden_dim = 4 * dim
            hidden_dim = int(2 * hidden_dim / 3)
            hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
        self.w1 = nn.Linear(dim, hidden_dim, bias=False)
        self.w2 = nn.Linear(hidden_dim, dim, bias=False)
        self.w3 = nn.Linear(dim, hidden_dim, bias=False)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        return self.dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))

class TransformerBlock(nn.Module):
    def __init__(self, layer_id: int, args: MyPretrainConfig):
        super().__init__()
        self.n_heads = args.n_heads
        self.dim = args.dim
        self.head_dim = args.dim // args.n_heads
        self.attention = Attention(args)
        self.feed_forward = FeedForward(
            dim=args.dim,
            hidden_dim=args.hidden_dim,
            multiple_of=args.multiple_of,
            dropout=args.dropout,
        )
        self.layer_id = layer_id
        self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
        self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)

    def forward(self, x, freqs_cos, freqs_sin):
        h = x + self.attention.forward(self.attention_norm(x), freqs_cos, freqs_sin)
        out = h + self.feed_forward.forward(self.ffn_norm(h))
        return out

class Transformer(PreTrainedModel):
    last_loss: Optional[torch.Tensor]

    def __init__(self, params: MyPretrainConfig):
        super().__init__(params)
        self.params = params
        self.vocab_size = params.vocab_size
        self.n_layers = params.n_layers

        self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
        self.dropout = nn.Dropout(params.dropout)
        self.layers = torch.nn.ModuleList()
        for layer_id in range(params.n_layers):
            self.layers.append(TransformerBlock(layer_id, params))
        self.norm = RMSNorm(params.dim, eps=params.norm_eps)
        self.output = nn.Linear(params.dim, params.vocab_size, bias=False)

        # share the unembedding parameters with the embedding parameters
        self.tok_embeddings.weight = self.output.weight # https://paperswithcode.com/method/weight-tying

        # some useful precompute for the RoPE relative positional embeddings
        freqs_cos, freqs_sin = precompute_freqs_cis(self.params.dim // self.params.n_heads, self.params.max_seq_len)
        self.register_buffer("freqs_cos", freqs_cos, persistent=False)
        self.register_buffer("freqs_sin", freqs_sin, persistent=False)

        # init all weights
        self.apply(self._init_weights)
        # apply special scaled init to the residual projections, per GPT-2 paper
        for pn, p in self.named_parameters():
            if pn.endswith('w3.weight') or pn.endswith('wo.weight'):
                torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * params.n_layers))

        # Initialize attribute for the loss of the last forward call. This will be set if the forward is called with a targets tensor.
        self.last_loss = None
        self.OUT = CausalLMOutputWithPast()

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)

    def forward(self, tokens: torch.Tensor, targets: Optional[torch.Tensor] = None) -> torch.Tensor:
        _bsz, seqlen = tokens.shape
        h = self.tok_embeddings(tokens)
        h = self.dropout(h)
        freqs_cos = self.freqs_cos[:seqlen]
        freqs_sin = self.freqs_sin[:seqlen]

        for layer in self.layers:
            h = layer(h, freqs_cos, freqs_sin)
        h = self.norm(h)

        if targets is not None:
            # if we are given some desired targets also calculate the loss
            logits = self.output(h)
            self.last_loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
        else:
            # inference-time mini-optimization: only forward the output on the very last position
            logits = self.output(h[:, [-1], :]) # note: using list [-1] to preserve the time dim
            self.last_loss = None

        self.OUT.__setitem__('logits', logits)
        self.OUT.__setitem__('last_loss', self.last_loss)
        return self.OUT

    def configure_optimizers(self, weight_decay, learning_rate, betas, device_type):
        # start with all of the candidate parameters
        param_dict = {pn: p for pn, p in self.named_parameters()}
        # filter out those that do not require grad
        param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
        # create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
        # i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
        decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
        nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
        optim_groups = [
            {'params': decay_params, 'weight_decay': weight_decay},
            {'params': nodecay_params, 'weight_decay': 0.0}
        ]
        num_decay_params = sum(p.numel() for p in decay_params)
        num_nodecay_params = sum(p.numel() for p in nodecay_params)
        print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
        print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
        # Create AdamW optimizer and use the fused version if it is available
        fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
        use_fused = fused_available and device_type == 'cuda'
        extra_args = dict(fused=True) if use_fused else dict()
        optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args)
        print(f"using fused AdamW: {use_fused}")

        return optimizer

    def estimate_mfu(self, fwdbwd_per_iter, dt):
        """ estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS """
        # first estimate the number of flops we do per iteration.
        # see PaLM paper Appendix B as ref: https://arxiv.org/abs/2204.02311
        N = sum(p.numel() for p in self.parameters())
        cfg = self.params
        L, H, Q, T = cfg.n_layers, cfg.n_heads, cfg.dim//cfg.n_heads, cfg.max_seq_len
        flops_per_token = 6*N + 12*L*H*Q*T
        flops_per_fwdbwd = flops_per_token * T
        flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter
        # express our flops throughput as ratio of A100 bfloat16 peak flops
        flops_achieved = flops_per_iter * (1.0/dt) # per second
        flops_promised = 312e12 # A100 GPU bfloat16 peak flops is 312 TFLOPS
        mfu = flops_achieved / flops_promised
        return mfu

    @torch.inference_mode()
    def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
        """
        Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
        the sequence max_new_tokens times, feeding the predictions back into the model each time.
        Most likely you'll want to make sure to be in model.eval() mode of operation for this.
        Also note this is a super inefficient version of sampling with no key/value cache.
        """
        for _ in range(max_new_tokens):
            # if the sequence context is growing too long we must crop it at block_size
            idx_cond = idx if idx.size(1) <= self.params.max_seq_len else idx[:, -self.params.max_seq_len:]
            # forward the model to get the logits for the index in the sequence
            logits = self(idx_cond)
            logits = logits[:, -1, :] # crop to just the final time step
            if temperature == 0.0:
                # "sample" the single most likely index
                _, idx_next = torch.topk(logits, k=1, dim=-1)
            else:
                # pluck the logits at the final step and scale by desired temperature
                logits = logits / temperature
                # optionally crop the logits to only the top k options
                if top_k is not None:
                    v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
                    logits[logits < v[:, [-1]]] = -float('Inf')
                # apply softmax to convert logits to (normalized) probabilities
                probs = F.softmax(logits, dim=-1)
                idx_next = torch.multinomial(probs, num_samples=1)
            # append sampled index to the running sequence and continue
            idx = torch.cat((idx, idx_next), dim=1)

        return idx

def get_lr(it, all):
    warmup_iters = 0
    lr_decay_iters = all
    min_lr = learning_rate / 10

    if it < warmup_iters:
        return learning_rate * it / warmup_iters
    if it > lr_decay_iters:
        return min_lr
    decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
    assert 0 <= decay_ratio <= 1
    coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
    return min_lr + coeff * (learning_rate - min_lr)

def init_model():
    def count_parameters(model):
        return sum(p.numel() for p in model.parameters() if p.requires_grad)

    model = Transformer(lm_config).to(device)
    print(f'LLM總參數(shù)量:{count_parameters(model) / 1e6:.3f} 百萬(wàn)')
    return model


if __name__ == "__main__":
    # -----------------------------------------------------------------------------
    lm_config = MyPretrainConfig()
    max_seq_len = lm_config.max_seq_len
    out_dir = 'out'
    epochs = 20             # 訓(xùn)練輪數(shù)
    batch_size = 8          # batch_size
    learning_rate = 1e-4    # 學(xué)習(xí)率
    device = 'cuda:0'       # or cpu
    dtype = 'bfloat16'
    save_dir = os.path.join(out_dir)
    os.makedirs(save_dir, exist_ok=True)
    os.makedirs(out_dir, exist_ok=True)
    tokens_per_iter = batch_size * max_seq_len
    torch.manual_seed(1337)
    device_type = device if "cuda" in device else "cpu"
    print(f"device_type: {device_type}")
    ctx = (
        nullcontext()
        if device_type == "cpu"
        else torch.cuda.amp.autocast()
    )
    # -----------------------------------------------------------------------------

    # -----init dataloader------
    data_path_list = [f'{basepath}/pretrain_data.bin']
    train_ds = PretrainDataset(data_path_list, max_length=max_seq_len, memmap=True)
    train_sampler = None
    num_workers = 16  # 可以根據(jù)系統(tǒng)的 CPU 核心數(shù)來(lái)調(diào)整
    train_loader = DataLoader(
        train_ds,
        batch_size=batch_size,
        pin_memory=True,
        drop_last=False,
        shuffle=False,
        num_workers=num_workers,
        sampler=train_sampler
    )

    # init model
    model = init_model()
    print(model)
    scaler = torch.cuda.amp.GradScaler(enabled=(dtype == dtype))
    optimizer = optim.Adam(model.parameters(), lr=learning_rate)

    # training loop
    accumulation_steps = 8
    iter_per_epoch = len(train_loader)
    for epoch in range(epochs):
        start_time = time.time()

        for step, (X, Y) in enumerate(train_loader):
            X = X.to(device)
            Y = Y.to(device)

            # 設(shè)置學(xué)習(xí)率
            lr = get_lr(epoch * iter_per_epoch + step, epochs * iter_per_epoch)
            for param_group in optimizer.param_groups:
                param_group['lr'] = lr

            # 前向傳播和損失計(jì)算
            with ctx:
                out = model(X, Y)
                loss = out.last_loss

            # 反向傳播
            scaler.scale(loss).backward()

            # 梯度剪裁和更新參數(shù)
            if (step + 1) % accumulation_steps == 0:
                scaler.unscale_(optimizer)
                torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
                scaler.step(optimizer)
                scaler.update()

            # 清零梯度
            optimizer.zero_grad(set_to_none=True)

            if step % 100 == 0:
                spend_time = time.time() - start_time
                print(
                    'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.7f} epoch_Time:{}min:'.format(
                        epoch,
                        epochs,
                        step,
                        iter_per_epoch,
                        loss.item(),
                        optimizer.param_groups[-1]['lr'],
                        spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
                model.eval()
                ckp = f'{save_dir}/pretrain_{lm_config.dim}.pth'
                state_dict = model.state_dict()
                torch.save(state_dict, ckp)
                model.train()

參考

(1)https://github.com/jingyaogong/minimind?tab=readme-ov-file#%E6%95%B0%E6%8D%AE%E9%9B%86%E4%B8%8B%E8%BD%BD%E5%9C%B0%E5%9D%80
(2)https://github.com/karpathy/llama2.c/blob/master/train.py

責(zé)任編輯:武曉燕 來(lái)源: 周末程序猿
相關(guān)推薦

2024-12-26 00:46:25

機(jī)器學(xué)習(xí)LoRA訓(xùn)練

2024-11-26 09:33:44

2025-04-03 15:40:41

機(jī)器學(xué)習(xí)大模型DeepSeek

2024-12-09 00:00:10

2025-01-10 08:38:10

2025-04-03 15:46:53

2020-08-10 15:05:02

機(jī)器學(xué)習(xí)人工智能計(jì)算機(jī)

2019-05-07 11:18:51

機(jī)器學(xué)習(xí)人工智能計(jì)算機(jī)

2022-03-28 09:00:00

SQL數(shù)據(jù)庫(kù)機(jī)器學(xué)習(xí)

2017-03-24 15:58:46

互聯(lián)網(wǎng)

2017-12-26 13:53:31

深度學(xué)習(xí)遷移學(xué)習(xí)

2023-02-28 13:09:53

訓(xùn)練模型

2023-06-24 19:59:40

2024-01-03 18:53:13

語(yǔ)言模型LLM

2017-07-11 10:19:24

淺層模型機(jī)器學(xué)習(xí)優(yōu)化算法

2022-09-06 08:00:00

機(jī)器學(xué)習(xí)金融數(shù)據(jù)科學(xué)

2018-11-07 09:00:00

機(jī)器學(xué)習(xí)模型Amazon Sage

2022-07-07 14:06:39

LiBai模型庫(kù)

2023-05-19 07:25:34

點(diǎn)贊
收藏

51CTO技術(shù)棧公眾號(hào)