自拍偷在线精品自拍偷,亚洲欧美中文日韩v在线观看不卡

DeepSeek 協(xié)程異步API 調(diào)用與llamafactory本地vllm部署推理

發(fā)布于 2025-4-1 07:26
瀏覽
0收藏

簡介

使用協(xié)程調(diào)用DeepSeek的API,發(fā)現(xiàn)效果并不明顯,沒有加速的效果。
但如是本地部署DeepSeek,本地部署需要支持異步調(diào)用,我使用 llamafactory 部署,發(fā)現(xiàn)協(xié)程加速的效果還是很顯著的。

代碼實戰(zhàn)

調(diào)用官方API 

DeepSeek官方文檔 https://api-docs.deepseek.com/zh-cn/
python 的調(diào)用代碼如下,該調(diào)用方式為同步調(diào)用速度很慢。

# Please install OpenAI SDK first: `pip3 install openai`

from openai import OpenAI

client = OpenAI(api_key="<DeepSeek API Key>", base_url="https://api.deepseek.com")

response = client.chat.completions.create(
    model="deepseek-chat",
    messages=[
        {"role": "system", "content": "You are a helpful assistant"},
        {"role": "user", "content": "Hello"},
    ],
    stream=False
)
print(response.choices[0].message.content)

import os
from tqdm import tqdm
from dotenv import load_dotenv
# 加載 .env 文件的密鑰
load_dotenv()

api_key = os.getenv("deepseek_api")
queries = [
    "What is AI?",
    "How does deep learning work?",
    "Explain reinforcement learning.",
    "人工智能的應用領域有哪些?",
    "大模型是如何進行預訓練的?",
    "什么是自監(jiān)督學習,它有哪些優(yōu)勢?",
    "Transformer 結構的核心組件是什么?",
    "GPT 系列模型是如何生成文本的?",
    "強化學習在游戲 AI 中的應用有哪些?",
    "目前 AI 領域面臨的主要挑戰(zhàn)是什么?"
]

answer1 = []

for query in tqdm(queries):
    # 官方提供的API調(diào)用方式
    response = client.chat.completions.create(
        model="deepseek-chat",
        messages=[
            {"role": "system", "content": "You are a helpful assistant"},
            {"role": "user", "content": "Hello"},
        ],
        stream=False,
    )
    content = response.choices[0].message.content
    answer1.append(content)

為了防止在分享代碼的時候,導致 API Key 泄露,我把key保存到 .env 文件中,通過??load_dotenv??加載密鑰。

DeepSeek 協(xié)程異步API 調(diào)用與llamafactory本地vllm部署推理-AI.x社區(qū)

協(xié)程異步調(diào)用 

import asyncio
from typing import List

# from langchain.chat_models import ChatOpenAI
from langchain_openai import ChatOpenAI
from langchain.schema import SystemMessage, HumanMessage

# 初始化模型
llm = ChatOpenAI(
    model_name="deepseek-chat",
    # model_name="deepseek-reasoner",
    openai_api_key=api_key,
    openai_api_base="https://api.deepseek.com/v1",
)


async def call_deepseek_async(query: str, progress) -> str:
    messages = [
        SystemMessage(cnotallow="You are a helpful assistant"),
        HumanMessage(cnotallow=query),
    ]
    response = await llm.ainvoke(messages)
    progress.update(1)
    return response.content


async def batch_call_deepseek(queries: List[str], concurrency: int = 5) -> List[str]:
    semaphore = asyncio.Semaphore(concurrency)
    progress_bar = tqdm(total=len(queries), desc="Async:")

    async def limited_call(query: str):
        async with semaphore:
            return await call_deepseek_async(query, progress_bar)

    tasks = [limited_call(query) for query in queries]
    return await asyncio.gather(*tasks)


# for python script 
# responses = asyncio.run(batch_call_deepseek(queries, cnotallow=10))

# for jupyter
response = await batch_call_deepseek(queries, cnotallow=10)

注意:異步調(diào)用需要使用 await 等待。

下述是tqdm 另外的一種,協(xié)程進度條的寫法:

from tqdm.asyncio import tqdm_asyncio
results = await tqdm_asyncio.gather(*tasks)

上述的異步協(xié)程代碼,我調(diào)用DeepSeek的API,沒有加速效果,我懷疑官方進行了限速。

我使用本地llamafactory部署的DeepSeek,上述異步協(xié)程的效果加速明顯。

llamafactory vllm本地部署 deepseek的腳本,只支持 linux 系統(tǒng)。

??deepseek_7B.yaml?? 文件內(nèi)容:

model_name_or_path: deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
template: deepseek3
infer_backend: vllm
vllm_enforce_eager: true
trust_remote_code: true

linux 部署腳本:

nohup llamafactory-cli api deepseek_7B.yaml > deepseek_7B.log 2>&1 &

異步協(xié)程 方法二 

下述是 ChatGPT 生成的另外一種異步協(xié)程寫法。
(下述方法我沒有在本地部署的API上測試過,僅供大家參考)

import asyncio
from tqdm.asyncio import tqdm_asyncio

answer = []

async def fetch(query):
    response = await client.chat.completions.create(
        model="deepseek-chat",
        messages=[
            {"role": "system", "content": "You are a helpful assistant"},
            {"role": "user", "content": query},
        ],
        stream=False,
    )
    return response.choices[0].message.content

async def main():
    tasks = [fetch(query) for query in queries]
    results = await tqdm_asyncio.gather(*tasks)
    answer.extend(results)

asyncio.run(main())

vllm_infer

如果你是linux系統(tǒng),那么相比API調(diào)用,最快的方式就是vllm推理。
你需要使用下述腳本,
???https://github.com/hiyouga/LLaMA-Factory/blob/main/scripts/vllm_infer.py??

python vllm_infer.py \
--model_name_or_path deepseek-ai/DeepSeek-R1-Distill-Qwen-7B \
--template deepseek3 \
--dataset industry_cls \
--dataset_dir ../../data/llamafactory_dataset/ \
--save_name output/generated_predictions.jsonl

llamafactory 可以指定自定義的數(shù)據(jù)集地址,你需要構建相應格式的數(shù)據(jù)集文件。

數(shù)據(jù)集文件夾下的文件:

DeepSeek 協(xié)程異步API 調(diào)用與llamafactory本地vllm部署推理-AI.x社區(qū)

DeepSeek 協(xié)程異步API 調(diào)用與llamafactory本地vllm部署推理-AI.x社區(qū)

DeepSeek 協(xié)程異步API 調(diào)用與llamafactory本地vllm部署推理-AI.x社區(qū)

本文轉(zhuǎn)載自??AI悠閑區(qū)??,作者:jieshenai


收藏
回復
舉報
回復
相關推薦