部署滿血DeepSeek R1的避坑指南-vLLM 0.7.1
今天看到vLLM的朋友圈發(fā)布了DeepSeek R1的PP支持,立刻開始我的搗鼓之旅,假如我訓(xùn)練的超大MoE上線了,也得做好技術(shù)準(zhǔn)備工作是不嘛。把踩坑經(jīng)驗(yàn)給大家分享一下,希望能夠相比于官方文檔更白話一點(diǎn)。
Distributed Inference and Serving: https://docs.vllm.ai/en/latest/serving/distributed_serving.html#running-vllm-on-multiple-nodes
知乎@游凱超 說一定要讓整個(gè)過程變得絲滑無比,我倆配合做了幾個(gè)驗(yàn)證,現(xiàn)在應(yīng)該只需要 Step0 和 Step3 就可以run起來了,如果遇到autoscalar的相關(guān)問題可以看Step1可以解決。
Step 0 Prepare weights & Environment
由于權(quán)重太大了,即使你網(wǎng)速可以,也不建議直連下載了。大家可以先從HF及或代理弄一份權(quán)重回來,直連大概率直接超時(shí)或者把公網(wǎng)IP打爆。我們今天展示的多機(jī)多卡8xH20 (x2) 部署,對(duì)應(yīng)TP size 8,PP size 2,所以要搞兩臺(tái)這樣的機(jī)器過來。同時(shí)有一個(gè)假設(shè):兩機(jī)的網(wǎng)絡(luò)互通,不一定需要IB,儲(chǔ)存需要共享(NAS或OSS均可),完成準(zhǔn)備工作之后便可以做第一步。
Step 1 Setup up Ray & Cluster
官方文檔里面簡單帶過了這一部分,但這個(gè)是我被卡時(shí)間太久的問題。首先我說一下官方文檔的意思,就是讓你準(zhǔn)備好兩個(gè)節(jié)點(diǎn),之間用ray start這個(gè)CLI去建立好ray集群。因?yàn)楹竺嬉?,但是比較坑的有兩點(diǎn),第一點(diǎn)是啟動(dòng)的命令似乎有點(diǎn)點(diǎn)問題,我在前幾次嘗試的時(shí)候都遇到了Ray的autoscaler報(bào)錯(cuò)的問題:
(autoscaler +1m19s) Error: No available node types can fulfill resource request {'node:33.18.26.153': 0.001, 'GPU': 1.0}. Add suitable node types to this cluster to resolve this issue.
(autoscaler +1m54s) Error: No available node types can fulfill resource request {'GPU': 1.0, 'node:33.18.26.153': 0.001}. Add suitable node types to this cluster to resolve this issue.
(autoscaler +2m29s) Error: No available node types can fulfill resource request {'GPU': 1.0, 'node:33.18.26.153': 0.001}. Add suitable node types to this cluster to resolve this issue.
INFO 02-02 09:39:14 ray_utils.py:212] Waiting for creating a placement group of specs for 150 seconds. specs=[{'node:33.18.26.153': 0.001, 'GPU': 1.0}, {'GPU': 1.0}, {'GPU': 1.0}, {'GPU': 1.0}, {'GPU': 1.0}, {'GPU': 1.0}, {'GPU': 1.0}, {'GPU': 1.0}, {'GPU': 1.0}, {'GPU': 1.0}, {'GPU': 1.0}, {'GPU': 1.0}, {'GPU': 1.0}, {'GPU': 1.0}, {'GPU': 1.0}, {'GPU': 1.0}]. Check `ray status` to see if you have enough resources.
這看起來就很奇怪,因?yàn)関LLM找Ray集群要的Resource是custom resource,'node:33.18.26.153':0.001,這可以理解成vLLM優(yōu)先要driver節(jié)點(diǎn)。但是這個(gè)東西我印象中是需要啟動(dòng)ray的時(shí)候自己設(shè)置的:
https://docs.ray.io/en/latest/ray-core/scheduling/resources.html#custom-resources
像這樣才會(huì)有這種resource。背后的原因是對(duì)于多(虛擬)網(wǎng)卡的機(jī)器會(huì)有多個(gè)網(wǎng)段,vLLM assume使用POD IP來做Ray的master尋址。
解法1:設(shè)置 VLLM_HOST_IP
# Get local IP address and set on every node before Ray start
VLLM_HOST_IP=$(hostname -I | awk '{print $1}')
export VLLM_HOST_IP
解法2:魔改Ray啟動(dòng)邏輯
def get_actual_ip():
"""Get the actual IP address of the current machine."""
try:
# Create a socket to connect to an external server (doesn't actually connect)
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.connect(('8.8.8.8', 80))
ip = s.getsockname()[0]
s.close()
return ip
except Exception:
# Fallback to hostname-based IP resolution
return socket.gethostbyname(socket.gethostname())
def start_ray_cluster():
free_ports = get_free_ports()
port = free_ports[0]
node_manager_port = free_ports[1]
master_addr = get_master_addr()
rank = get_rank()
node_ip = get_actual_ip() # Use the new function to get actual IP
# Define custom resource based on node IP
resource_spec = f'--resources=\'{{"node:{node_ip}": 1}}\''
if rank == 0:
cmd = f"ray start --head --port={port} --node-ip-address={master_addr} --node-manager-port {node_manager_port} --node-name={master_addr} {resource_spec}"
else:
cmd = f"ray start --address={master_addr}:{port} --node-manager-port {node_manager_port} --node-name={get_addr()} {resource_spec}"
if ray.is_initialized():
print("Ray is already initialized, skipping node level init.")
else:
stop_cmd = "ray stop"
execute(stop_cmd, check=True)
print(f"Executing Ray start command: {cmd}")
execute(cmd, check=True)
其中execute可以這樣寫,
import time
import subprocess
def execute(cmd, check=False, retry=1):
ret = subprocess.run(cmd, shell=True, capture_output=True, text=True, check=check)
state = ret.returncode == 0
msg = ret.stdout if state else ret.stderr
if not state and retry > 1:
print(f"execute {cmd} got error {msg}, retry...")
time.sleep(1)
return execute(cmd, check, retry-1)
return state, msg
然后這里我稍微提一下ray的一些基礎(chǔ)玩法:大家在使用Ray的時(shí)候一般都不是在裸機(jī)上面的,大部分深度學(xué)習(xí)的資源都是k8s結(jié)合kubeflow或者volcano這樣的插件分發(fā)出來的。環(huán)境變量里面會(huì)有當(dāng)前是第幾個(gè)rank,頭結(jié)點(diǎn)master_addr這樣的信息,大家可以根據(jù)自己的需要把這些函數(shù)實(shí)現(xiàn)一下。比較坑的 {resource_spec} 這里我已經(jīng)替大家把坑給填了。
Step 2 Other small bugs
期間又報(bào)了兩個(gè)錯(cuò)誤,花了一點(diǎn)時(shí)間修復(fù):
Traceback (most recent call last):
File "/usr/local/bin/vllm", line 5, in <module>
from vllm.scripts import main
File "/usr/local/lib/python3.10/dist-packages/vllm/__init__.py", line 4, in <module>
from vllm.engine.async_llm_engine import AsyncLLMEngine
File "/usr/local/lib/python3.10/dist-packages/vllm/engine/async_llm_engine.py", line 15, in <module>
from vllm.engine.llm_engine import (DecoderPromptComponents, LLMEngine,
File "/usr/local/lib/python3.10/dist-packages/vllm/engine/llm_engine.py", line 24, in <module>
from vllm.engine.output_processor.interfaces import (
File "/usr/local/lib/python3.10/dist-packages/vllm/engine/output_processor/interfaces.py", line 6, in <module>
from vllm.engine.output_processor.stop_checker import StopChecker
File "/usr/local/lib/python3.10/dist-packages/vllm/engine/output_processor/stop_checker.py", line 6, in <module>
from vllm.transformers_utils.tokenizer import AnyTokenizer
File "/usr/local/lib/python3.10/dist-packages/vllm/transformers_utils/tokenizer.py", line 13, in <module>
from vllm.transformers_utils.tokenizers import (BaichuanTokenizer,
File "/usr/local/lib/python3.10/dist-packages/vllm/transformers_utils/tokenizers/__init__.py", line 2, in <module>
from vllm.transformers_utils.tokenizers.mistral import MistralTokenizer
File "/usr/local/lib/python3.10/dist-packages/vllm/transformers_utils/tokenizers/mistral.py", line 9, in <module>
from mistral_common.tokens.tokenizers.mistral import ChatCompletionRequest
File "/usr/local/lib/python3.10/dist-packages/mistral_common/tokens/tokenizers/mistral.py", line 32, in <module>
from mistral_common.tokens.tokenizers.multimodal import (
File "/usr/local/lib/python3.10/dist-packages/mistral_common/tokens/tokenizers/multimodal.py", line 6, in <module>
import cv2
File "/usr/local/lib/python3.10/dist-packages/cv2/__init__.py", line 181, in <module>
bootstrap()
File "/usr/local/lib/python3.10/dist-packages/cv2/__init__.py", line 175, in bootstrap
if __load_extra_py_code_for_module("cv2", submodule, DEBUG):
File "/usr/local/lib/python3.10/dist-packages/cv2/__init__.py", line 28, in __load_extra_py_code_for_module
py_module = importlib.import_module(module_name)
File "/usr/lib/python3.10/importlib/__init__.py", line 126, in import_module
return _bootstrap._gcd_import(name[level:], package, level)
File "/usr/local/lib/python3.10/dist-packages/cv2/typing/__init__.py", line 171, in <module>
LayerId = cv2.dnn.DictValue
AttributeError: module 'cv2.dnn' has no attribute 'DictValue'
一個(gè)opencv封建余孽的問題,pin住opencv的版本來解決
pip install opencv-python-headless==4.5.4.58
還有一個(gè)load之后報(bào)TypeError的問題
[rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/model_executor/models/deepseek_v3.py", line 472, in forward
[rank0]: kv_c, k_pe = self.kv_a_proj_with_mqa(hidden_states)[0].split(
[rank0]: File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
[rank0]: return self._call_impl(*args, **kwargs)
[rank0]: File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1747, in _call_impl
[rank0]: return forward_call(*args, **kwargs)
[rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/model_executor/layers/linear.py", line 246, in forward
[rank0]: output = self.quant_method.apply(self, x, bias)
[rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/model_executor/layers/quantization/fp8.py", line 357, in apply
[rank0]: return apply_w8a8_block_fp8_linear(
[rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/model_executor/layers/quantization/utils/fp8_utils.py", line 61, in apply_w8a8_block_fp8_linear
[rank0]: output = w8a8_block_fp8_matmul(q_input,
[rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/model_executor/layers/quantization/utils/fp8_utils.py", line 470, in w8a8_block_fp8_matmul
[rank0]: configs = get_w8a8_block_fp8_configs(N, K, block_size[0], block_size[1])
[rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/model_executor/layers/quantization/utils/fp8_utils.py", line 407, in get_w8a8_block_fp8_configs
[rank0]: device_name = current_platform.get_device_name().replace(" ", "_")
[rank0]: TypeError: a bytes-like object is required, not 'str'
通過升級(jí) pynvml 解決
pip install pynvml -U
Step 3 Run the model
這一步反而是最簡單的:
vllm serve /your/path/to_checkpoint_deepseek-r1/ --tensor-parallel-size 8 --pipeline-parallel-size 2 --trust-remote-code --host 0.0.0.0
由于有了PP加持,沒有IB的同學(xué)也可以嘗試把sequence length和bsz給稍微拉大一些拉。用gaoce哥哥貢獻(xiàn)的Reasoning Output,在同一臺(tái)機(jī)器來試一把,或者換一臺(tái)機(jī)器把localhost改了:
from openai import OpenAI
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
# Round 1
messages = [{"role": "user", "content": "9.11 and 9.8, which is greater?"}]
response = client.chat.completions.create(model=model, messages=messages)
reasoning_content = response.choices[0].message.reasoning_content
content = response.choices[0].message.content
print("reasoning_content:", reasoning_content)
print("content:", content)
對(duì),你不是卡主了,是你的錢包不夠厚。切到后臺(tái)可以看到,這個(gè)prompt里面
INFO 02-02 14:18:52 metrics.py:453] Avg prompt throughput: 1.7 tokens/s, Avg generation throughput: 0.1 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 0.0%, CPU KV cache usage: 0.0%.
INFO 02-02 14:18:57 metrics.py:453] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 20.7 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cacheusage: 0.0%, CPU KV cache usage: 0.0%.
INFO 02-02 14:19:02 metrics.py:453] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 20.5 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cacheusage: 0.0%, CPU KV cache usage: 0.0%.
INFO 02-02 14:19:07 metrics.py:453] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 20.5 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cacheusage: 0.0%, CPU KV cache usage: 0.0%.
INFO 02-02 14:19:12 metrics.py:453] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 20.1 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cacheusage: 0.0%, CPU KV cache usage: 0.0%.
INFO 02-02 14:19:17 metrics.py:453] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 19.8 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cacheusage: 0.1%, CPU KV cache usage: 0.0%.
INFO 02-02 14:19:22 metrics.py:453] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 19.4 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cacheusage: 0.1%, CPU KV cache usage: 0.0%.
INFO 02-02 14:19:27 metrics.py:453] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 19.1 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cacheusage: 0.1%, CPU KV cache usage: 0.0%.
稍等一會(huì)他就會(huì)告訴你9.8更大了。
祝大家搗鼓順利,感謝vLLM社區(qū)的工作。
https://github.com/vllm-project/vllm/pull/12679
凱超真 nb 春節(jié)在這做貼身客服,哈哈,RL仔現(xiàn)在不管原來是主修文還是主修理的,都先修infra吧。
本文轉(zhuǎn)載自 ??NLP工作站??,作者: 曹宇
