自拍偷在线精品自拍偷,亚洲欧美中文日韩v在线观看不卡

簡單的模擬膝關(guān)節(jié)振動(dòng)信號(hào)(VAG)分析(MATLAB)

發(fā)布于 2025-4-11 00:52
瀏覽
0收藏

目標(biāo):

  • 區(qū)分正常與病理性膝關(guān)節(jié)VAG信號(hào):通過模擬信號(hào)生成、濾波、峰值檢測與時(shí)頻分析,判斷信號(hào)是否異常。
  • 關(guān)鍵指標(biāo):基于濾波后信號(hào)的峰值數(shù)量(>30則判定為異常)。

模塊:

(1) 信號(hào)生成

  • 正常信號(hào):vag_normal = sin(2*pi*50*t) + 0.2*randn(size(t))
  • 設(shè)計(jì)意圖:50Hz正弦波模擬正常關(guān)節(jié)振動(dòng),疊加弱噪聲(標(biāo)準(zhǔn)差0.2)。
  • 病理性信號(hào):vag_pathology = sin(2*pi*50*t) + 1.0*sin(2*pi*120*t) + 0.7*randn(size(t))
  • 設(shè)計(jì)意圖:在50Hz基礎(chǔ)上添加120Hz高頻成分(幅度1.0)和強(qiáng)噪聲(標(biāo)準(zhǔn)差0.7),模擬病理特征。

(2) 濾波設(shè)計(jì)

  • 濾波器類型:3階巴特沃斯帶通濾波器(20-250Hz)。
  • 作用:保留VAG信號(hào)主要頻段(20-250Hz),抑制低頻肌電干擾和高頻噪聲。
  • 實(shí)現(xiàn):butter(3, [20 250]/(fs/2), 'bandpass') + filtfilt(零相位濾波)。
  • 優(yōu)點(diǎn):filtfilt消除相位失真,確保峰值時(shí)間對(duì)齊。

(3) 峰值檢測

  • 正常信號(hào)參數(shù):MinPeakHeight=0.5, MinPeakDistance=fs/20(50ms間隔)。
  • 病理性信號(hào)參數(shù):MinPeakHeight=0.3, MinPeakDistance=fs/50(20ms間隔)。
  • 設(shè)計(jì)意圖:病理性信號(hào)預(yù)期有更多密集高頻峰值,降低高度閾值和最小間隔以捕獲更多峰值。

(4) 異常判斷

  • 閾值:peak_threshold = 30(總峰值數(shù) >30 判定為異常)。
  • 邏輯驗(yàn)證:正常信號(hào)預(yù)期峰值較少,病理性信號(hào)因高頻成分和噪聲導(dǎo)致峰值增多。

% Define Sampling Frequency and Time Vector
fs = 1000; % Sampling frequency in Hz
duration = 5; % Duration of signal in seconds
t = 0:1/fs:duration-1/fs; % Time vector

% Simulate Normal and Pathological VAG Signals
vag_normal = sin(2*pi*50*t) + 0.2*randn(size(t)); % Normal VAG: 50 Hz with noise
vag_pathology = sin(2*pi*50*t) + 1.0*sin(2*pi*120*t) + 0.7*randn(size(t)); % Pathological: 50 Hz + 120 Hz with increased amplitude


% Bandpass Filter Design (20-250 Hz)
[b, a] = butter(3, [20 250]/(fs/2), 'bandpass'); % 3rd order Butterworth bandpass filter

% Apply Bandpass Filter
vag_normal_filtered = filtfilt(b, a, vag_normal); % Filter normal signal
vag_pathology_filtered = filtfilt(b, a, vag_pathology); % Filter pathological signal


% Detect Peaks in Filtered Signals
% Adjust parameters to detect more peaks in pathological signal
[peaks_normal, locs_normal] = findpeaks(vag_normal_filtered, 'MinPeakHeight', 0.5, 'MinPeakDistance', fs/20);
[peaks_pathology, locs_pathology] = findpeaks(vag_pathology_filtered, 'MinPeakHeight', 0.3, 'MinPeakDistance', fs/50); % Lower height, closer peaks

% Define Abnormality Detection Threshold
peak_threshold = 30; % Number of peaks threshold for abnormal detection


% Abnormality Detection Logic (Based on Filtered Signals)
is_abnormal_normal = length(peaks_normal) > peak_threshold; % True if abnormal
is_abnormal_pathology = length(peaks_pathology) > peak_threshold; % True if abnormal


% Generate Abnormality Status Strings
normal_status = 'No Detection'; % Default for normal signal
if is_abnormal_normal
    normal_status = 'Yes Detection';
end


pathological_status = 'No Detection'; % Default for pathological signal
if is_abnormal_pathology
    pathological_status = 'Yes Detection';
end


% Visualization
figure('Name', 'Knee Joint VAG Signal Analysis', 'NumberTitle', 'off');


% Plot 1: Original Normal Signal
subplot(4, 2, 1);
plot(t, vag_normal);
xlabel('Time (s)');
ylabel('Amplitude');
title('Original Normal VAG Signal');
grid on;


% Plot 2: Original Pathological Signal
subplot(4, 2, 2);
plot(t, vag_pathology);
xlabel('Time (s)');
ylabel('Amplitude');
title('Original Pathological VAG Signal');
grid on;


% Plot 3: Filtered Normal Signal with Detected Peaks
subplot(4, 2, 3);
plot(t, vag_normal_filtered);
hold on;
plot(locs_normal/fs, peaks_normal, 'ro'); % Mark peaks
xlabel('Time (s)');
ylabel('Amplitude');
title('Filtered Normal VAG Signal with Peaks');
grid on;


% Plot 4: Filtered Pathological Signal with Detected Peaks
subplot(4, 2, 4);
plot(t, vag_pathology_filtered);
hold on;
plot(locs_pathology/fs, peaks_pathology, 'ro'); % Mark peaks
xlabel('Time (s)');
ylabel('Amplitude');
title('Filtered Pathological VAG Signal with Peaks');
grid on;


% Plot 5: Spectrogram of Filtered Normal Signal
subplot(4, 2, 5);
spectrogram(vag_normal_filtered, 256, 200, 512, fs, 'yaxis');
title('Spectrogram of Filtered Normal VAG Signal');
xlabel('Time (s)');
ylabel('Frequency (Hz)');
colorbar;


% Plot 6: Spectrogram of Filtered Pathological Signal
subplot(4, 2, 6);
spectrogram(vag_pathology_filtered, 256, 200, 512, fs, 'yaxis');
title('Spectrogram of Filtered Pathological VAG Signal');
xlabel('Time (s)');
ylabel('Frequency (Hz)');
colorbar;


% Plot 7: Normal Signal Analysis Summary
subplot(4, 2, 7);
text(0.1, 0.5, {
    'Normal VAG Signal Analysis Summary:', ...
    ['Number of Peaks Detected: ', num2str(length(peaks_normal))], ...
    ['Abnormal Detection: ', normal_status]}, ...
    'FontSize', 10);
axis off;


% Plot 8: Pathological Signal Analysis Summary
subplot(4, 2, 8);
text(0.1, 0.5, {
    'Pathological VAG Signal Analysis Summary:', ...
    ['Number of Peaks Detected: ', num2str(length(peaks_pathology))], ...
    ['Abnormal Detection: ', pathological_status]}, ...
    'FontSize', 10);
axis off;


% Display Summary in Command Window
disp('---- VAG Signal Analysis Summary ----');
disp(['Normal Signal - Peaks Detected: ', num2str(length(peaks_normal)), ' -> Abnormal Detection: ', normal_status]);
disp(['Pathological Signal - Peaks Detected: ', num2str(length(peaks_pathology)), ' -> Abnormal Detection: ', pathological_status]);

Normal Signal - Peaks Detected: 72 -> Abnormal Detection: Yes Detection

Pathological Signal - Peaks Detected: 153 -> Abnormal Detection: Yes Detection

簡單的模擬膝關(guān)節(jié)振動(dòng)信號(hào)(VAG)分析(MATLAB)-AI.x社區(qū)圖片

? 本文轉(zhuǎn)載自??高斯的手稿??

收藏
回復(fù)
舉報(bào)
回復(fù)
相關(guān)推薦