樸素貝葉斯的學(xué)習(xí)與分類
乍看起來似乎是要求一個(gè)概率,還要先得到額外三個(gè)概率,有用么?其實(shí)這個(gè)簡單的公式非常貼切人類推理的邏輯,即通過可以觀測的數(shù)據(jù),推測不可觀測的數(shù)據(jù)。舉個(gè)例子,也許你在辦公室內(nèi)不知道外面天氣是晴天雨天,但是你觀測到有同事帶了雨傘,那么可以推斷外面八成在下雨。
若X 是要輸入的隨機(jī)變量,則Y 是要輸出的目標(biāo)類別。對(duì)X 進(jìn)行分類,即使求的使P(Y|X) ***的Y值。若X 為n 維特征變量 X = {A1, A2, …..An} ,若輸出類別集合為Y = {C1, C2, …. Cm} 。
X 所屬最有可能類別 y = argmax P(Y|X), 進(jìn)行如下推導(dǎo):
樸素貝葉斯的學(xué)習(xí)
有公式可知,欲求分類結(jié)果,須知如下變量:
各個(gè)類別的條件概率,
輸入隨機(jī)變量的特質(zhì)值的條件概率
示例代碼:
- import copy
- class native_bayes_t:
- def __init__(self, character_vec_, class_vec_):
- """
- 構(gòu)造的時(shí)候需要傳入特征向量的值,以數(shù)組方式傳入
- 參數(shù)1 character_vec_ 格式為 [("character_name",["","",""])]
- 參數(shù)2 為包含所有類別的數(shù)組 格式為["class_X", "class_Y"]
- """
- self.class_set = {}
- # 記錄該類別下各個(gè)特征值的條件概率
- character_condition_per = {}
- for character_name in character_vec_:
- character_condition_per[character_name[0]] = {}
- for character_value in character_name[1]:
- character_condition_per[character_name[0]][character_value] = {
- 'num' : 0, # 記錄該類別下該特征值在訓(xùn)練樣本中的數(shù)量,
- 'condition_per' : 0.0 # 記錄該類別下各個(gè)特征值的條件概率
- }
- for class_name in class_vec:
- self.class_set[class_name] = {
- 'num' : 0, # 記錄該類別在訓(xùn)練樣本中的數(shù)量,
- 'class_per' : 0.0, # 記錄該類別在訓(xùn)練樣本中的先驗(yàn)概率,
- 'character_condition_per' : copy.deepcopy(character_condition_per),
- }
- #print("init", character_vec_, self.class_set) #for debug
- def learn(self, sample_):
- """
- learn 參數(shù)為訓(xùn)練的樣本,格式為
- [
- {
- 'character' : {'character_A':'A1'}, #特征向量
- 'class_name' : 'class_X' #類別名稱
- }
- ]
- """
- for each_sample in sample:
- character_vec = each_sample['character']
- class_name = each_sample['class_name']
- data_for_class = self.class_set[class_name]
- data_for_class['num'] += 1
- # 各個(gè)特質(zhì)值數(shù)量加1
- for character_name in character_vec:
- character_value = character_vec[character_name]
- data_for_character = data_for_class['character_condition_per'][character_name][character_value]
- data_for_character['num'] += 1
- # 數(shù)量計(jì)算完畢, 計(jì)算最終的概率值
- sample_num = len(sample)
- for each_sample in sample:
- character_vec = each_sample['character']
- class_name = each_sample['class_name']
- data_for_class = self.class_set[class_name]
- # 計(jì)算類別的先驗(yàn)概率
- data_for_class['class_per'] = float(data_for_class['num']) / sample_num
- # 各個(gè)特質(zhì)值的條件概率
- for character_name in character_vec:
- character_value = character_vec[character_name]
- data_for_character = data_for_class['character_condition_per'][character_name][character_value]
- data_for_character['condition_per'] = float(data_for_character['num']) / data_for_class['num']
- from pprint import pprint
- pprint(self.class_set) #for debug
- def classify(self, input_):
- """
- 對(duì)輸入進(jìn)行分類,輸入input的格式為
- {
- "character_A":"A1",
- "character_B":"B3",
- }
- """
- best_class = ''
- max_per = 0.0
- for class_name in self.class_set:
- class_data = self.class_set[class_name]
- per = class_data['class_per']
- # 計(jì)算各個(gè)特征值條件概率的乘積
- for character_name in input_:
- character_per_data = class_data['character_condition_per'][character_name]
- per = per * character_per_data[input_[character_name]]['condition_per']
- print(class_name, per)
- if per >= max_per:
- best_class = class_name
- return best_class
- character_vec = [("character_A",["A1","A2","A3"]), ("character_B",["B1","B2","B3"])]
- class_vec = ["class_X", "class_Y"]
- bayes = native_bayes_t(character_vec, class_vec)
- sample = [
- {
- 'character' : {'character_A':'A1', 'character_B':'B1'}, #特征向量
- 'class_name' : 'class_X' #類別名稱
- },
- {
- 'character' : {'character_A':'A3', 'character_B':'B1'}, #特征向量
- 'class_name' : 'class_X' #類別名稱
- },
- {
- 'character' : {'character_A':'A3', 'character_B':'B3'}, #特征向量
- 'class_name' : 'class_X' #類別名稱
- },
- {
- 'character' : {'character_A':'A2', 'character_B':'B2'}, #特征向量
- 'class_name' : 'class_X' #類別名稱
- },
- {
- 'character' : {'character_A':'A2', 'character_B':'B2'}, #特征向量
- 'class_name' : 'class_Y' #類別名稱
- },
- {
- 'character' : {'character_A':'A3', 'character_B':'B1'}, #特征向量
- 'class_name' : 'class_Y' #類別名稱
- },
- {
- 'character' : {'character_A':'A1', 'character_B':'B3'}, #特征向量
- 'class_name' : 'class_Y' #類別名稱
- },
- {
- 'character' : {'character_A':'A1', 'character_B':'B3'}, #特征向量
- 'class_name' : 'class_Y' #類別名稱
- },
- ]
- input_data ={
- "character_A":"A1",
- "character_B":"B3",
- }
- bayes.learn(sample)
- print(bayes.classify(input_data))
總結(jié):
樸素貝葉斯分類實(shí)現(xiàn)簡單,預(yù)測的效率較高
樸素貝葉斯成立的假設(shè)是個(gè)特征向量各個(gè)屬性條件獨(dú)立,建模的時(shí)候需要特別注意
原文鏈接:http://www.cnblogs.com/zhiranok/archive/2012/09/22/native_bayes.html
【編輯推薦】