對(duì)Spark的那些【魔改】
前言
這兩年做 streamingpro 時(shí),不可避免的需要對(duì)Spark做大量的增強(qiáng)。就如同我之前吐槽的,Spark大量使用了new進(jìn)行對(duì)象的創(chuàng)建,導(dǎo)致里面的實(shí)現(xiàn)基本沒(méi)有辦法進(jìn)行替換。
比如SparkEnv里有個(gè)屬性叫closureSerializer,是專門做任務(wù)的序列化反序列化的,當(dāng)然也負(fù)責(zé)對(duì)函數(shù)閉包的序列化反序列化。我們看看內(nèi)部是怎么實(shí)現(xiàn)的:
- val serializer = instantiateClassFromConf[Serializer](
- "spark.serializer", "org.apache.spark.serializer.JavaSerializer")
- logDebug(s"Using serializer: ${serializer.getClass}")
- val serializerManager = new SerializerManager(serializer, conf, ioEncryptionKey)
- val closureSerializer = new JavaSerializer(conf)
- val envInstance = new SparkEnv(
- .....
- closureSerializer, ....
這里直接new了一個(gè)JavaSerializer,并不能做配置。如果不改源碼,你沒(méi)有任何辦法可以替換掉掉這個(gè)實(shí)現(xiàn)。同理,如果我想替換掉Executor的實(shí)現(xiàn),基本也是不可能的。
今年有兩個(gè)大地方涉及到了對(duì)Spark的【魔改】,也就是不通過(guò)改源碼,使用原有發(fā)型包,通過(guò)添加新代碼的方式來(lái)對(duì)Spark進(jìn)行增強(qiáng)。
二層RPC的支持
我們知道,在Spark里,我們只能通過(guò)Task才能touch到Executor?,F(xiàn)有的API你是沒(méi)辦法直接操作到所有或者指定部分的Executor。比如,我希望所有Executor都加載一個(gè)資源文件,現(xiàn)在是沒(méi)辦法做到的。為了能夠?qū)xecutor進(jìn)行直接的操作,那就需要建立一個(gè)新的通訊層。那具體怎么做呢?
首先,在Driver端建立一個(gè)Backend,這個(gè)比較簡(jiǎn)單,
- class PSDriverBackend(sc: SparkContext) extends Logging {
- val conf = sc.conf
- var psDriverRpcEndpointRef: RpcEndpointRef = null
- def createRpcEnv = {
- val isDriver = sc.env.executorId == SparkContext.DRIVER_IDENTIFIER
- val bindAddress = sc.conf.get(DRIVER_BIND_ADDRESS)
- val advertiseAddress = sc.conf.get(DRIVER_HOST_ADDRESS)
- var port = sc.conf.getOption("spark.ps.driver.port").getOrElse("7777").toInt
- val ioEncryptionKey = if (sc.conf.get(IO_ENCRYPTION_ENABLED)) {
- Some(CryptoStreamUtils.createKey(sc.conf))
- } else {
- None
- }
- logInfo(s"setup ps driver rpc env: ${bindAddress}:${port} clientMode=${!isDriver}")
- var createSucess = false
- var count = 0
- val env = new AtomicReference[RpcEnv]()
- while (!createSucess && count < 10) {
- try {
- env.set(RpcEnv.create("PSDriverEndpoint", bindAddress, port, sc.conf,
- sc.env.securityManager, clientMode = !isDriver))
- createSucess = true
- } catch {
- case e: Exception =>
- logInfo("fail to create rpcenv", e)
- count += 1
- port += 1
- }
- }
- if (env.get() == null) {
- logError(s"fail to create rpcenv finally with attemp ${count} ")
- }
- env.get()
- }
- def start() = {
- val env = createRpcEnv
- val pSDriverBackend = new PSDriverEndpoint(sc, env)
- psDriverRpcEndpointRef = env.setupEndpoint("ps-driver-endpoint", pSDriverBackend)
- }
- }
這樣,你可以理解為在Driver端啟動(dòng)了一個(gè)PRC Server。要運(yùn)行這段代碼也非常簡(jiǎn)單,直接在主程序里運(yùn)行即可:
- // parameter server should be enabled by default
- if (!params.containsKey("streaming.ps.enable") || params.get("streaming.ps.enable").toString.toBoolean) {
- logger.info("ps enabled...")
- if (ss.sparkContext.isLocal) {
- localSchedulerBackend = new LocalPSSchedulerBackend(ss.sparkContext)
- localSchedulerBackend.start()
- } else {
- logger.info("start PSDriverBackend")
- psDriverBackend = new PSDriverBackend(ss.sparkContext)
- psDriverBackend.start()
- }
- }
這里我們需要實(shí)現(xiàn)local模式和cluster模式兩種。
Driver啟動(dòng)了一個(gè)PRC Server,那么Executor端如何啟動(dòng)呢?Executor端似乎沒(méi)有任何一個(gè)地方可以讓我啟動(dòng)一個(gè)PRC Server? 其實(shí)有的,只是非常trick,我們知道Spark是允許自定義Metrics的,并且會(huì)調(diào)用用戶實(shí)現(xiàn)的metric特定的方法,我們只要開發(fā)一個(gè)metric Sink,在里面啟動(dòng)RPC Server,騙過(guò)Spark即可。具體時(shí)下如下:
- class PSServiceSink(val property: Properties, val registry: MetricRegistry,
- securityMgr: SecurityManager) extends Sink with Logging {
- def env = SparkEnv.get
- var psDriverUrl: String = null
- var psExecutorId: String = null
- var hostname: String = null
- var cores: Int = 0
- var appId: String = null
- val psDriverPort = 7777
- var psDriverHost: String = null
- var workerUrl: Option[String] = None
- val userClassPath = new mutable.ListBuffer[URL]()
- def parseArgs = {
- //val runtimeMxBean = ManagementFactory.getRuntimeMXBean();
- //var argv = runtimeMxBean.getInputArguments.toList
- var argv = System.getProperty("sun.java.command").split("\\s+").toList
- .....
- psDriverHost = host
- psDriverUrl = "spark://ps-driver-endpoint@" + psDriverHost + ":" + psDriverPort
- }
- parseArgs
- def createRpcEnv = {
- val isDriver = env.executorId == SparkContext.DRIVER_IDENTIFIER
- val bindAddress = hostname
- val advertiseAddress = ""
- val port = env.conf.getOption("spark.ps.executor.port").getOrElse("0").toInt
- val ioEncryptionKey = if (env.conf.get(IO_ENCRYPTION_ENABLED)) {
- Some(CryptoStreamUtils.createKey(env.conf))
- } else {
- None
- }
- //logInfo(s"setup ps driver rpc env: ${bindAddress}:${port} clientMode=${!isDriver}")
- RpcEnv.create("PSExecutorBackend", bindAddress, port, env.conf,
- env.securityManager, clientMode = !isDriver)
- }
- override def start(): Unit = {
- new Thread(new Runnable {
- override def run(): Unit = {
- logInfo(s"delay PSExecutorBackend 3s")
- Thread.sleep(3000)
- logInfo(s"start PSExecutor;env:${env}")
- if (env.executorId != SparkContext.DRIVER_IDENTIFIER) {
- val rpcEnv = createRpcEnv
- val pSExecutorBackend = new PSExecutorBackend(env, rpcEnv, psDriverUrl, psExecutorId, hostname, cores)
- PSExecutorBackend.executorBackend = Some(pSExecutorBackend)
- rpcEnv.setupEndpoint("ps-executor-endpoint", pSExecutorBackend)
- }
- }
- }).start()
- }
- ...
- }
到這里,我們就能成功啟動(dòng)RPC Server,并且連接上Driver中的PRC Server。現(xiàn)在,你就可以在不修改Spark 源碼的情況下,盡情的寫通訊相關(guān)的代碼了,讓你可以更好的控制Executor。
比如在PSExecutorBackend 實(shí)現(xiàn)如下代碼:
- override def receiveAndReply(context: RpcCallContext): PartialFunction[Any, Unit] = {
- case Message.TensorFlowModelClean(modelPath) => {
- logInfo("clean tensorflow model")
- TFModelLoader.close(modelPath)
- context.reply(true)
- }
- case Message.CopyModelToLocal(modelPath, destPath) => {
- logInfo(s"copying model: ${modelPath} -> ${destPath}")
- HDFSOperator.copyToLocalFile(destPath, modelPath, true)
- context.reply(true)
- }
- }
接著你就可以在Spark里寫如下的代碼調(diào)用了:
- val psDriverBackend = runtime.asInstanceOf[SparkRuntime].psDriverBackend psDriverBackend.psDriverRpcEndpointRef.send(Message.TensorFlowModelClean("/tmp/ok"))
是不是很酷。
修改閉包的序列化方式
Spark的任務(wù)調(diào)度開銷非常大。對(duì)于一個(gè)復(fù)雜的任務(wù),業(yè)務(wù)邏輯代碼執(zhí)行時(shí)間大約是3-7ms,但是整個(gè)spark運(yùn)行的開銷大概是1.3s左右。
經(jīng)過(guò)詳細(xì)dig發(fā)現(xiàn),sparkContext里RDD轉(zhuǎn)化時(shí),會(huì)對(duì)函數(shù)進(jìn)行clean操作,clean操作的過(guò)程中,默認(rèn)會(huì)檢查是不是能序列化(就是序列化一遍,沒(méi)拋出異常就算可以序列化)。而序列化成本相當(dāng)高(默認(rèn)使用的JavaSerializer并且對(duì)于函數(shù)和任務(wù)序列化,是不可更改的),單次序列化耗時(shí)就達(dá)到200ms左右,在local模式下對(duì)其進(jìn)行優(yōu)化,可以減少600ms左右的請(qǐng)求時(shí)間。
當(dāng)然,需要申明的是,這個(gè)是針對(duì)local模式進(jìn)行修改的。那具體怎么做的呢?
我們先看看Spark是怎么調(diào)用序列化函數(shù)的,首先在SparkContext里,clean函數(shù)是這樣的:
- private[spark] def clean[F <: AnyRef](f: F, checkSerializable: Boolean = true): F = {
- ClosureCleaner.clean(f, checkSerializable)
- f
- }
調(diào)用的是ClosureCleaner.clean方法,該方法里是這么調(diào)用學(xué)序列化的:
- try {
- if (SparkEnv.get != null) {
- SparkEnv.get.closureSerializer.newInstance().serialize(func)
- }
- } catch {
- case ex: Exception => throw new SparkException("Task not serializable", ex)
- }
SparkEnv是在SparkContext初始化的時(shí)候創(chuàng)建的,該對(duì)象里面包含了closureSerializer,該對(duì)象通過(guò)new JavaSerializer創(chuàng)建。既然序列化太慢,又因?yàn)槲覀兤鋵?shí)是在Local模式下,本身是可以不需要序列化的,所以我們這里想辦法把closureSerializer的實(shí)現(xiàn)替換掉。正如我們前面吐槽,因?yàn)樵赟park代碼里寫死了,沒(méi)有暴露任何自定義的可能性,所以我們又要魔改一下了。
首先,我們新建一個(gè)SparkEnv的子類:
- class WowSparkEnv(
- ....) extends SparkEnv(
接著實(shí)現(xiàn)一個(gè)自定義的Serializer:
- class LocalNonOpSerializerInstance(javaD: SerializerInstance) extends SerializerInstance {
- private def isClosure(cls: Class[_]): Boolean = {
- cls.getName.contains("$anonfun$")
- }
- override def serialize[T: ClassTag](t: T): ByteBuffer = {
- if (isClosure(t.getClass)) {
- val uuid = UUID.randomUUID().toString
- LocalNonOpSerializerInstance.maps.put(uuid, t.asInstanceOf[AnyRef])
- ByteBuffer.wrap(uuid.getBytes())
- } else {
- javaD.serialize(t)
- }
- }
- override def deserialize[T: ClassTag](bytes: ByteBuffer): T = {
- val s = StandardCharsets.UTF_8.decode(bytes).toString()
- if (LocalNonOpSerializerInstance.maps.containsKey(s)) {
- LocalNonOpSerializerInstance.maps.remove(s).asInstanceOf[T]
- } else {
- bytes.flip()
- javaD.deserialize(bytes)
- }
- }
- override def deserialize[T: ClassTag](bytes: ByteBuffer, loader: ClassLoader): T = {
- val s = StandardCharsets.UTF_8.decode(bytes).toString()
- if (LocalNonOpSerializerInstance.maps.containsKey(s)) {
- LocalNonOpSerializerInstance.maps.remove(s).asInstanceOf[T]
- } else {
- bytes.flip()
- javaD.deserialize(bytes, loader)
- }
- }
- override def serializeStream(s: OutputStream): SerializationStream = {
- javaD.serializeStream(s)
- }
- override def deserializeStream(s: InputStream): DeserializationStream = {
- javaD.deserializeStream(s)
- }
接著我們需要再封裝一個(gè)LocalNonOpSerializer,
- class LocalNonOpSerializer(conf: SparkConf) extends Serializer with Externalizable {
- val javaS = new JavaSerializer(conf)
- override def newInstance(): SerializerInstance = {
- new LocalNonOpSerializerInstance(javaS.newInstance())
- }
- override def writeExternal(out: ObjectOutput): Unit = Utils.tryOrIOException {
- javaS.writeExternal(out)
- }
- override def readExternal(in: ObjectInput): Unit = Utils.tryOrIOException {
- javaS.readExternal(in)
- }
- }
現(xiàn)在,萬(wàn)事俱備,只欠東風(fēng)了,我們?cè)趺床拍馨堰@些代碼讓Spark運(yùn)行起來(lái)。具體做法非常魔幻,實(shí)現(xiàn)一個(gè)enhance類:
- def enhanceSparkEnvForAPIService(session: SparkSession) = {
- val env = SparkEnv.get
- //創(chuàng)建一個(gè)新的WowSparkEnv對(duì)象,然后將里面的Serializer替換成我們自己的LocalNonOpSerializer
- val wowEnv = new WowSparkEnv(
- .....
- new LocalNonOpSerializer(env.conf): Serializer,
- ....)
- // 將SparkEnv object里的實(shí)例替換成我們的
- //WowSparkEnv
- SparkEnv.set(wowEnv)
- //但是很多地方在SparkContext啟動(dòng)后都已經(jīng)在使用之前就已經(jīng)生成的SparkEnv,我們需要做些調(diào)整
- //我們先把之前已經(jīng)啟動(dòng)的LocalSchedulerBackend里的scheduer停掉
- val localScheduler = session.sparkContext.schedulerBackend.asInstanceOf[LocalSchedulerBackend]
- val scheduler = ReflectHelper.field(localScheduler, "scheduler")
- val totalCores = localScheduler.totalCores
- localScheduler.stop()
- //創(chuàng)建一個(gè)新的LocalSchedulerBackend
- val wowLocalSchedulerBackend = new WowLocalSchedulerBackend(session.sparkContext.getConf, scheduler.asInstanceOf[TaskSchedulerImpl], totalCores)
- wowLocalSchedulerBackend.start()
- //把SparkContext里的_schedulerBackend替換成我們的實(shí)現(xiàn)
- ReflectHelper.field(session.sparkContext, "_schedulerBackend", wowLocalSchedulerBackend)
- }
完工。
其實(shí)還有很多
比如在Spark里,Python Worker默認(rèn)一分鐘沒(méi)有被使用是會(huì)被殺死的,但是在StreamingPro里,這些python worker因?yàn)槎家虞d模型,所以啟動(dòng)成本是非常高的,殺了之后再啟動(dòng)就沒(méi)辦法忍受了,通過(guò)類似的方式進(jìn)行魔改,從而使得空閑時(shí)間是可配置的。如果大家感興趣,可以翻看StreamingPro相關(guān)代碼。