自拍偷在线精品自拍偷,亚洲欧美中文日韩v在线观看不卡

不使用先驗(yàn)知識(shí)與復(fù)雜訓(xùn)練策略,從頭訓(xùn)練二值神經(jīng)網(wǎng)絡(luò)!

開發(fā) 開發(fā)工具 前端
來自德國(guó)哈索普拉特納研究院 (Hasso Plattner Institute) 的研究者近日發(fā)布論文,介紹了他們提出的訓(xùn)練二值神經(jīng)網(wǎng)絡(luò)新方法。該方法不使用以往研究通過全精度模型得到的先驗(yàn)知識(shí)和復(fù)雜訓(xùn)練策略,也能實(shí)現(xiàn)目前準(zhǔn)確率最佳的二值神經(jīng)網(wǎng)絡(luò)。

引言

現(xiàn)在,日常生活中許多工作的自動(dòng)化處理已取得重要的研究進(jìn)展──從家用掃地機(jī)器人到工業(yè)生產(chǎn)線機(jī)器人,許多工作已經(jīng)實(shí)現(xiàn)高度自動(dòng)化。其他技術(shù)(如自動(dòng)駕駛汽車)目前正處于發(fā)展過程中,并且強(qiáng)烈依賴于機(jī)器學(xué)習(xí)解決方案。智能手機(jī)上采用深度學(xué)習(xí)技術(shù)處理各種任務(wù)的 APP 數(shù)量一直保持快速增長(zhǎng),且未來仍將繼續(xù)增長(zhǎng)。所有這些設(shè)備的算力有限,通常要努力最小化能耗,但卻有許多機(jī)器學(xué)習(xí)的應(yīng)用場(chǎng)景。

以全自動(dòng)駕駛汽車為例,保證實(shí)時(shí)圖像處理同時(shí)達(dá)到高精度是系統(tǒng)關(guān)鍵。此外,由于該模式下很難保證穩(wěn)定的低延遲網(wǎng)絡(luò)連接,因此圖像處理系統(tǒng)需配置于汽車內(nèi)部。該配置要求雖然會(huì)限制可支配計(jì)算力及內(nèi)存,但也將從低能耗中獲取收益。最有希望解決上述問題的技術(shù)之一就是二值神經(jīng)網(wǎng)絡(luò)(Binary Neural Network,BNN)。在 BNN 中,卷積神經(jīng)網(wǎng)絡(luò)(CNN)中常用的全精度權(quán)重被替換成二值權(quán)重。這使得存儲(chǔ)空間理論上可壓縮 32 倍,使 CPU only 架構(gòu)能夠完成更高效的推斷。

本文的研究成果概括如下:

  • 本文提出了一種訓(xùn)練二值模型的簡(jiǎn)單策略,不需要使用預(yù)訓(xùn)練全精度模型。
  • 實(shí)驗(yàn)表明,該策略并未得益于其他常用方法(如 scaling factor 或自定義梯度計(jì)算)。
  • 本文表明快捷連接(shortcut connection)數(shù)的增加能夠顯著改善 BNN 的分類準(zhǔn)確率,并介紹了一種新方法:基于密集快捷連接(dense shortcut connection)創(chuàng)建有效的二值模型。
  • 針對(duì)不同模型架構(gòu)及規(guī)模,本文提出的方法較其他方法達(dá)到當(dāng)前***的準(zhǔn)確率。

網(wǎng)絡(luò)架構(gòu)

在研究模型架構(gòu)前,我們必須考慮 BNN 的主要缺點(diǎn):首先,相較于全精度網(wǎng)絡(luò),BNN 的信息密度理論上是前者的 1/32。研究表明,32 位與 8 位網(wǎng)絡(luò)之間的差別不大,且 8 位網(wǎng)絡(luò)的準(zhǔn)確率水平幾乎與全精度網(wǎng)絡(luò)相同 [3]。然而,bit-width 降低到 4 位甚至 1 位(二進(jìn)制)時(shí),準(zhǔn)確率會(huì)明顯下降 [8, 20]。因此,需要借助其他技術(shù)降低精度損失,例如增加通過網(wǎng)絡(luò)的信息流。我們認(rèn)為主要有三種方法能夠幫助保存信息,且無(wú)需擔(dān)心網(wǎng)絡(luò)二值化:

方法一:二值模型應(yīng)該盡可能在網(wǎng)絡(luò)中多使用快捷連接,使靠后的網(wǎng)絡(luò)層能夠使用靠前的網(wǎng)絡(luò)層所獲得的信息,不用擔(dān)心二值化引起的信息損失。殘差網(wǎng)絡(luò)(Residual Network)[4] 與密集連接網(wǎng)絡(luò)(Densely Connected Network)[7] 的全精度模型架構(gòu)都使用了類似快捷連接。此外,網(wǎng)絡(luò)層之間連接數(shù)的增加會(huì)改善模型性能,尤其是二值網(wǎng)絡(luò)。

二值網(wǎng)絡(luò)

圖 2

圖 2:不同網(wǎng)絡(luò)架構(gòu)的單個(gè)構(gòu)造塊(加粗黑線的長(zhǎng)度代表濾波器數(shù)量)。(a)帶有瓶頸層架構(gòu)的初始 ResNet 設(shè)計(jì)。少量濾波器會(huì)降低 BNN 的信息量。(b)無(wú)瓶頸層架構(gòu)的 ResNet 設(shè)計(jì)。濾波器數(shù)量增加,但這時(shí)卷積層由 3 變?yōu)?2。(c)添加額外快捷連接的 ResNet 架構(gòu) [15]。(d)初始 DenseNet 設(shè)計(jì),第二層卷積操作中出現(xiàn)瓶頸層。(e)無(wú)瓶頸層架構(gòu)的 DenseNet 設(shè)計(jì),兩次卷積操作變成一次 3 × 3 卷積操作。(f)本文提出的 DenseNet 設(shè)計(jì),具備 N 個(gè)濾波器的卷積操作被替換成兩個(gè)層,每一層各使用 N/2 個(gè)濾波器。

方法二:與方法一思路相同,包含瓶頸層的網(wǎng)絡(luò)架構(gòu)始終是一項(xiàng)亟待解決的挑戰(zhàn)。瓶頸層架構(gòu)減少了濾波器數(shù)量,顯著降低了網(wǎng)絡(luò)層間的信息通路,最終使得 BNN 的信息流變少。因此,我們假定消除瓶頸層或增加瓶頸層的濾波器數(shù)量都能使 BNN 獲取***的結(jié)果。

方法三:將二值網(wǎng)絡(luò)中的某些核心層替換為全精度層,以保存信息(提高模型準(zhǔn)確率)。原因如下:如果網(wǎng)絡(luò)層完成二值化,取消快捷連接,則(二值化產(chǎn)生的)信息損失無(wú)法在后續(xù)的網(wǎng)絡(luò)層中復(fù)原,這將影響***層(卷積層)和***一層(全連接層,輸出神經(jīng)元數(shù)與類別數(shù)相同)。***層為整個(gè)網(wǎng)絡(luò)產(chǎn)生初始信息,***一層使用最終信息進(jìn)行預(yù)測(cè)。因此,我們?cè)?**層使用全精度層,***一層使用全網(wǎng)絡(luò)架構(gòu)。關(guān)于該決策,我們采用了之前研究 [16,20] 的成果,其通過實(shí)驗(yàn)驗(yàn)證了***層和***一層的二值化將大幅降低準(zhǔn)確率,且節(jié)省的內(nèi)存及計(jì)算資源非常有限。深度網(wǎng)絡(luò)的另一個(gè)關(guān)鍵部分是下采樣卷積,其將網(wǎng)絡(luò)先前收集的所有信息轉(zhuǎn)化為規(guī)模較小且具備更多通道的特征圖(該卷積通常步幅為 2,輸出通道數(shù)兩倍于輸入通道數(shù))。下采樣過程中損失的的任何信息將不可恢復(fù)。因此,即便會(huì)增加模型規(guī)模和運(yùn)算次數(shù),下采樣層是否應(yīng)該被替換為全精度層始終需要仔細(xì)權(quán)衡。

圖 3

圖 3:ResNet 與 DenseNet 的下采樣層。加粗黑線表示下采樣層,它可被替換為全精度層。如果在 DenseNet 中使用全精度下采樣層,則需要加大減少通道數(shù)量的縮減率(虛線表示沒有減少的通道數(shù)量)。

表 1

表 1:在 MNIST 和 CIFAR-10 數(shù)據(jù)集上,本文提出的二值模型的性能與 Yang 等人 [18] 結(jié)果的對(duì)比。

表 7

表 7:在 ImageNet 數(shù)據(jù)集上,本文方法與當(dāng)前***二值模型的對(duì)比。所有方法都在下采樣部分的卷積層中使用了全精度權(quán)重。

論文:Training Competitive Binary Neural Networks from Scratch

  • 論文鏈接:https://arxiv.org/abs/1812.01965
  • 代碼鏈接:https://github.com/hpi-xnor/BMXNet-v2

摘要

卷積神經(jīng)網(wǎng)絡(luò)已在不同應(yīng)用領(lǐng)域獲得令人矚目的成就。現(xiàn)有文獻(xiàn)已提出許多在移動(dòng)端和嵌入式設(shè)備中應(yīng)用 CNN 模型的方法。針對(duì)計(jì)算力低的設(shè)備,二值神經(jīng)網(wǎng)絡(luò)是一項(xiàng)特別有前景的技術(shù)。然而,從零開始訓(xùn)練準(zhǔn)確的二值模型仍是一項(xiàng)挑戰(zhàn)。之前的研究工作通常使用全精度模型產(chǎn)生的先驗(yàn)知識(shí)與復(fù)雜的訓(xùn)練策略。本研究關(guān)注如何在不使用類似先驗(yàn)知識(shí)與復(fù)雜訓(xùn)練策略的前提下,改善二值神經(jīng)網(wǎng)絡(luò)的性能。實(shí)驗(yàn)表明,在標(biāo)準(zhǔn)基準(zhǔn)數(shù)據(jù)集上,本文提出的方法能達(dá)到當(dāng)前***水平。此外,據(jù)我們所知,我們***成功地將密集連接網(wǎng)絡(luò)架構(gòu)應(yīng)用于二值網(wǎng)絡(luò),提高了當(dāng)前***的性能。

【本文是51CTO專欄機(jī)構(gòu)“機(jī)器之心”的原創(chuàng)譯文,微信公眾號(hào)“機(jī)器之心( id: almosthuman2014)”】

戳這里,看該作者更多好文

責(zé)任編輯:趙寧寧 來源: 51CTO專欄
相關(guān)推薦

2017-08-28 21:31:37

TensorFlow深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)

2017-12-22 08:47:41

神經(jīng)網(wǎng)絡(luò)AND運(yùn)算

2017-09-28 16:15:12

神經(jīng)網(wǎng)絡(luò)訓(xùn)練多層

2017-03-27 16:18:30

神經(jīng)網(wǎng)絡(luò)TensorFlow人工智能

2017-08-29 13:50:03

TensorFlow深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)

2017-07-19 11:39:25

深度學(xué)習(xí)人工智能boosting

2021-12-28 08:48:54

PyTorch神經(jīng)網(wǎng)絡(luò)人工智能

2022-05-20 11:01:06

模型性能框架

2022-10-17 15:43:14

深度學(xué)習(xí)回歸模型函數(shù)

2022-06-14 13:55:30

模型訓(xùn)練網(wǎng)絡(luò)

2020-05-28 15:55:06

iPhone神經(jīng)網(wǎng)絡(luò)人工智能

2017-09-26 10:09:55

EpochBatch Size神經(jīng)網(wǎng)絡(luò)

2019-08-19 00:31:16

Pytorch神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)

2021-07-13 09:36:26

神經(jīng)網(wǎng)絡(luò)PyTorch框架

2022-04-02 15:56:43

神經(jīng)網(wǎng)絡(luò)人工智能技術(shù)

2023-09-03 14:17:56

深度學(xué)習(xí)人工智能

2023-06-30 13:48:00

算法AI

2017-08-24 14:55:55

神經(jīng)網(wǎng)絡(luò)synaptic瀏覽器

2017-07-03 10:55:48

神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)

2023-10-04 11:57:20

訓(xùn)練模型
點(diǎn)贊
收藏

51CTO技術(shù)棧公眾號(hào)