自拍偷在线精品自拍偷,亚洲欧美中文日韩v在线观看不卡

騰訊 AI Lab 聯(lián)合研究登上Nature子刊,獨(dú)創(chuàng)方法提升蛋白質(zhì)結(jié)構(gòu)預(yù)測(cè)精度

人工智能
通過(guò)騰訊自研的提升蛋白質(zhì)結(jié)構(gòu)預(yù)測(cè)精度的新方法,聯(lián)合研究團(tuán)隊(duì)首次解析了II型5A還原酶(SRD5A2)的三維結(jié)構(gòu),揭示了治療脫發(fā)和前列腺增生的藥物分子“非那雄胺”對(duì)于該酶的抑制機(jī)制,這將有助于深化研究相關(guān)疾病的病理學(xué)機(jī)制及藥物優(yōu)化。

 [[352691]]

11月17日,騰訊公布了一項(xiàng)人工智能助力藥物發(fā)現(xiàn)的新進(jìn)展。

通過(guò)騰訊自研的提升蛋白質(zhì)結(jié)構(gòu)預(yù)測(cè)精度的新方法,聯(lián)合研究團(tuán)隊(duì)首次解析了II型5A還原酶(SRD5A2)的三維結(jié)構(gòu),揭示了治療脫發(fā)和前列腺增生的藥物分子“非那雄胺”對(duì)于該酶的抑制機(jī)制,這將有助于深化研究相關(guān)疾病的病理學(xué)機(jī)制及藥物優(yōu)化。

此次,騰訊 AI Lab 采用“從頭折疊”的蛋白質(zhì)結(jié)構(gòu)預(yù)測(cè)方法幫助解析了SRD5A2晶體結(jié)構(gòu),并通過(guò)自研AI工具“ tFold”有效提升了蛋白質(zhì)結(jié)構(gòu)預(yù)測(cè)精度,在科研突破中發(fā)揮了核心作用。除了在SRD5A2結(jié)構(gòu)中的應(yīng)用,這套方法還可以拓展應(yīng)用于蛋白質(zhì)分子和病理學(xué)機(jī)制的相關(guān)研究中。

該項(xiàng)聯(lián)合研究成果于近日登上了國(guó)際頂級(jí)期刊 Nature 子刊《 Nature Communications》。論文題為《人體類(lèi)固醇II型5A還原酶與抗雄激素藥物非那雄胺的結(jié)構(gòu)研究》,由南科大生物系魏志毅副教授課題組與匹茲堡大學(xué)張誠(chéng)教授、新加坡 A*STAR 研究所范昊研究員、騰訊 AI Lab 黃俊洲博士帶領(lǐng)的研究小組合作完成。本次得到權(quán)威學(xué)術(shù)期刊發(fā)表及評(píng)審的高度評(píng)價(jià),也驗(yàn)證了該成果對(duì)藥物研發(fā)的創(chuàng)新價(jià)值。

 

論文鏈接:https://www.nature.com/articles/s41467-020-19249-z

據(jù)了解,tFold工具還在CAMEO(全球唯一的蛋白質(zhì)結(jié)構(gòu)預(yù)測(cè)自動(dòng)評(píng)估平臺(tái))的國(guó)際測(cè)評(píng)中連續(xù)半年保持周度冠軍。目前,tFold公測(cè)版本已通過(guò)騰訊「云深智藥(iDrug)」平臺(tái)官網(wǎng)對(duì)外開(kāi)放。

官網(wǎng)鏈接:https://drug.ai.tencent.com/console/cn/tfold

“從頭折疊”新方法破解晶體學(xué)難題

在人體內(nèi),性激素有促進(jìn)性器官成熟、副性征發(fā)育及維持性功能等作用。

二氫睪酮是人體中已知最強(qiáng)的雄激素,對(duì)于人體的發(fā)育和生理活動(dòng)至關(guān)重要,但同時(shí)也需要保持合理的平衡。一方面,二氫睪酮控制著男性性器官的發(fā)育,水平過(guò)低將導(dǎo)致男性性征缺陷。另一方面,水平過(guò)高又是導(dǎo)致前列腺增生和脫發(fā)的罪魁禍?zhǔn)住?/p>

合成性激素依賴(lài)類(lèi)固醇還原酶,二氫睪酮即由 SRD5A2 催化合成。因此,當(dāng)患者因?yàn)槎洳G酮水平過(guò)高而出現(xiàn)前列腺增生和脫發(fā)問(wèn)題時(shí),可以通過(guò)抑制 SRD5A2 來(lái)降低患者二氫睪酮水平。作為SRD5A2 的高效抑制劑,非那雄胺(finasteride)被廣泛用于治療這類(lèi)疾病。

盡管 SRD5A2 具有重要生理作用,其高分辨率結(jié)構(gòu)信息卻十分缺乏,導(dǎo)致 SRD5A2 催化二氫睪酮合成的機(jī)理以及非那雄胺抑制 SRD5A2 酶活的機(jī)制并不清晰。

這是由于 SRD5A2 具有獨(dú)特的七次跨膜結(jié)構(gòu),其與人類(lèi)全部已知結(jié)構(gòu)的蛋白在結(jié)構(gòu)上存在較大差異,難以通過(guò)“模板建模”(template-based modeling)方法獲得初始構(gòu)型來(lái)解析晶體數(shù)據(jù)。同時(shí)又因?yàn)?SRD5A2 是一類(lèi)多次跨膜蛋白,使得傳統(tǒng)的用于獲取蛋白質(zhì)晶體相位信息的“重原子替代”(Heavy-atom derivatization)方法亦難以奏效。

為了解決這一難題,騰訊 AI Lab 科研團(tuán)隊(duì)采用了難度更高的“從頭折疊”(de novo folding)方法來(lái)預(yù)測(cè) SRD5A2 蛋白的三維結(jié)構(gòu),并將其用于“分子置換”(molecular replacement, MR)的初始構(gòu)型來(lái)解析晶體數(shù)據(jù)。

所謂“從頭折疊”,是相對(duì)于“模板建模”的一種蛋白質(zhì)結(jié)構(gòu)預(yù)測(cè)方法。“模板建模”是目前最普遍的蛋白結(jié)構(gòu)預(yù)測(cè)手段,但有一個(gè)使用前提——人類(lèi)已知的蛋白結(jié)構(gòu)數(shù)據(jù)庫(kù)(即PDB)當(dāng)中,必須存在和預(yù)測(cè)的蛋白相似的結(jié)構(gòu),否則就無(wú)法使用。而騰訊AI Lab采用的“從頭折疊”方法則跳出了這個(gè)限制,可以不依賴(lài)于模板來(lái)預(yù)測(cè)蛋白結(jié)構(gòu)。

但此前,通過(guò)“從頭折疊”方法預(yù)測(cè)的蛋白質(zhì)結(jié)構(gòu)精度不高,難以滿(mǎn)足晶體數(shù)據(jù)解析的精度需要。而在騰訊 tFold 工具加持下得到的高精度“從頭折疊”的結(jié)構(gòu)模型,為分子置換方法提供相位,繼而解析確定2.8Å 原子級(jí)別精度的SRD5A2晶體結(jié)構(gòu)。

這一結(jié)果能直接推進(jìn)我們對(duì)體內(nèi) SRD5A2 活性失調(diào)引發(fā)的各類(lèi)疾病的理解,進(jìn)而為基于 SRD5A2 結(jié)構(gòu)的藥物開(kāi)發(fā)提供更多有價(jià)值的參考信息。

《Nature Communications》的一位評(píng)審對(duì)此創(chuàng)新方法給予了高度評(píng)價(jià):“作者能用預(yù)測(cè)的分子置換(MR)模型來(lái)確定晶體結(jié)構(gòu),這一點(diǎn)非常有趣。本評(píng)審認(rèn)為該技術(shù)確實(shí)非常出色,整個(gè)X射線晶體學(xué)界將從該方法中受益匪淺。”

 

 


《Nature Communications》期刊評(píng)審評(píng)論原文節(jié)選

 

 

自研冠軍級(jí) tFold 工具突破蛋白質(zhì)結(jié)構(gòu)預(yù)測(cè)精度

騰訊 AI Lab 自研的 tFold 工具正是破解 SRD5A2 蛋白結(jié)構(gòu)這一重要難題的關(guān)鍵。為了提升“從頭折疊”方法(又稱(chēng)“自由建模”)的精度,tFold 工具通過(guò)三項(xiàng)技術(shù)創(chuàng)新,實(shí)現(xiàn)了蛋白結(jié)構(gòu)預(yù)測(cè)精度的大幅提升。

首先,實(shí)驗(yàn)室研發(fā)了“多數(shù)據(jù)來(lái)源融合”(multi-source fusion)技術(shù),來(lái)挖掘多組多序列聯(lián)配(multiplesequence alignment, MSA)中的共進(jìn)化信息。

然后,借助 “深度交叉注意力殘差網(wǎng)絡(luò)” (deep cross-attention residual network,DCARN),能極大提高一些重要的蛋白2D結(jié)構(gòu)信息(如:殘基對(duì)距離矩陣)的預(yù)測(cè)精度。

最后,通過(guò)一種新穎的“模板輔助自由建模“(Template-based Free Modeling, TBFM)方法,將自由建模(Free Modeling, FM)和模板建模(Template-based Modeling, TBM)生成的3D模型中的結(jié)構(gòu)信息加以有效融合,從而大大提高了最終3D建模的準(zhǔn)確性。

在研究方面,tFold 平臺(tái)已在國(guó)際公認(rèn)最權(quán)威的測(cè)試平臺(tái)CAMEO上證明其創(chuàng)新價(jià)值及有效性。騰訊 AI Lab 于2020年初在CAMEO平臺(tái)注冊(cè)了自動(dòng)化蛋白結(jié)構(gòu)預(yù)測(cè)服務(wù)器 tFold server,并自2020年6月起至今一直保持周度(圖1)、月度、季度、半年度冠軍。tFold server在一般案例上領(lǐng)先業(yè)內(nèi)權(quán)威方法6%以上,在困難案例上則領(lǐng)先12%以上。

5A2b8e8.png" target="_blank">5A2b8e8.png" width="auto" border="0" height="auto" alt="" title="">

 

在應(yīng)用方面,tFold server的公測(cè)版也已經(jīng)在騰訊「云深智藥」平臺(tái)發(fā)布。用戶(hù)可以手動(dòng)輸入待預(yù)測(cè)的氨基酸序列或從本地上傳FASTA 格式的序列文件。在經(jīng)過(guò)一定時(shí)間的計(jì)算之后,用戶(hù)即可得到使用“從頭折疊”方法預(yù)測(cè)得到高精確度蛋白結(jié)構(gòu)(下圖)。

5A1deb4.png" target="_blank">5A1deb4.png" width="auto" border="0" height="auto" alt="" title="">

 

tFold server的3D Modeling輸出頁(yè)面。左邊部分為從頭折疊得到的3D蛋白模型;右邊部分是該3D模型在給定的預(yù)測(cè)殘基對(duì)距離矩陣下的偏差。

騰訊「云深智藥」用AI持續(xù)助力藥物發(fā)現(xiàn)

依托大數(shù)據(jù)挖掘與機(jī)器學(xué)習(xí)等先進(jìn)技術(shù)優(yōu)勢(shì),騰訊正致力于推動(dòng)AI與醫(yī)療產(chǎn)業(yè)的深度結(jié)合,助力社會(huì)整體醫(yī)療水平提升。

據(jù)了解,「云深智藥」是騰訊發(fā)布的首個(gè)AI驅(qū)動(dòng)的藥物發(fā)現(xiàn)平臺(tái),整合了騰訊 AI Lab和騰訊云在前沿算法、優(yōu)化數(shù)據(jù)庫(kù)以及計(jì)算資源上的優(yōu)勢(shì),致力于幫助用戶(hù)大幅度減少尋找潛在活性化合物的時(shí)間和成本。

 

騰訊「云深智藥」平臺(tái)主要功能

「云深智藥」的五大模塊覆蓋臨床前新藥發(fā)現(xiàn)全流程,目前各功能模塊正持續(xù)完善與升級(jí)。除蛋白質(zhì)結(jié)構(gòu)預(yù)測(cè)外,平臺(tái)還上線了分子生成模塊。AI驅(qū)動(dòng)的分子生成模型是輔助小分子藥物設(shè)計(jì)的重要工具之一,不僅能加速藥物發(fā)現(xiàn)流程,還能啟發(fā)藥化專(zhuān)家跳出現(xiàn)有的分子庫(kù),探索更大的化合物空間。該模塊還整合了ADMET屬性預(yù)測(cè)功能,可對(duì)生成的新分子實(shí)時(shí)進(jìn)行屬性篩選。

此外,平臺(tái)的逆合成算法也已取得了一定進(jìn)展,計(jì)劃于明年上線。其它小分子和大分子藥物發(fā)現(xiàn)功能模塊也將逐步上線。

除藥物研發(fā)以外,騰訊 AI Lab 也在影像篩查、病理診斷等多個(gè)醫(yī)療領(lǐng)域持續(xù)探索,不斷拓展和深化研究與應(yīng)用。

在AI助力醫(yī)療技術(shù)方面,實(shí)驗(yàn)室聯(lián)合多家合作單位研發(fā)了中國(guó)首款智能顯微鏡,幫助醫(yī)生提高工作效率。2020年10月,在免疫組化樣本(IHC)分析的基礎(chǔ)上,智能顯微鏡新增了針對(duì)宮頸液基細(xì)胞(TCT)標(biāo)本進(jìn)行臨床樣本的顯微圖像進(jìn)行觀察、篩選、標(biāo)記功能,并已獲得國(guó)家藥監(jiān)局審批證書(shū)。

在病理研究領(lǐng)域,騰訊 AI Lab 也研發(fā)出了世界領(lǐng)先的前沿算法,比如斬獲MICCAI 2020 CPM-RadPath 挑戰(zhàn)賽第一名的算法,能夠準(zhǔn)確區(qū)分神經(jīng)膠質(zhì)瘤(大腦最常見(jiàn)腫瘤)的不同亞型并進(jìn)行分級(jí),有望彌補(bǔ)人工診斷效率低、主觀因素影響較大等問(wèn)題。

此外,騰訊 AI Lab 在今年早些時(shí)候與南方醫(yī)院合作發(fā)表了名為《基于病理圖片的結(jié)直腸癌微衛(wèi)星不穩(wěn)定性預(yù)測(cè)模型的開(kāi)發(fā)和解釋》的文章,利用算法模型可輔助病理醫(yī)生篩查結(jié)直腸癌中微衛(wèi)星不穩(wěn)定亞型,降低微衛(wèi)星不穩(wěn)定篩查的條件要求,幫助更多的地方醫(yī)院也有能力執(zhí)行這樣的篩查。

責(zé)任編輯:武曉燕 來(lái)源: 51CTO
相關(guān)推薦

2021-12-20 10:07:35

AI 數(shù)據(jù)人工智能

2021-07-24 10:21:46

模型人工智能深度學(xué)習(xí)

2023-03-03 14:00:00

模型深度學(xué)習(xí)

2024-08-22 18:45:27

2023-07-06 16:59:56

英特爾

2024-05-09 11:08:22

2023-07-06 13:23:49

2022-02-14 00:04:24

AI蛋白質(zhì)結(jié)構(gòu)

2022-11-02 13:41:46

2022-07-12 14:56:30

AI模型研究

2021-11-22 09:39:21

深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)人工智能

2025-01-13 13:00:00

AI模型訓(xùn)練

2022-10-08 12:38:23

模型開(kāi)源

2024-11-08 15:07:14

2021-12-07 09:46:39

AI 模型人工智能

2023-07-17 10:34:57

模型性能

2021-03-05 14:56:31

技術(shù)人工智能透視術(shù)

2024-11-29 14:10:00

神經(jīng)網(wǎng)絡(luò)AI

2023-07-13 12:53:02

FrameDiffAI
點(diǎn)贊
收藏

51CTO技術(shù)棧公眾號(hào)