自拍偷在线精品自拍偷,亚洲欧美中文日韩v在线观看不卡

從操作系統(tǒng)層面分析 Java IO 演進之路

開發(fā)
本文從操作系統(tǒng)實際調(diào)用角度(以CentOS Linux release 7.5操作系統(tǒng)為示例),力求追根溯源看IO的每一步操作到底發(fā)生了什么。

 [[408648]]

前言

本文從操作系統(tǒng)實際調(diào)用角度(以CentOS Linux release 7.5操作系統(tǒng)為示例),力求追根溯源看IO的每一步操作到底發(fā)生了什么。

關于如何查看系統(tǒng)調(diào)用,Linux可以使用 strace 來查看任何軟件的系統(tǒng)調(diào)動(這是個很好的分析學習方法):strace -ff -o ./out java TestJava

一 BIO

  1. /** * Alipay.com Inc. Copyright (c) 2004-2020 All Rights Reserved. */package io; import java.io.*;import java.net.ServerSocket;import java.net.Socket;/** * @author xiangyong.ding * @version $Id: TestSocket.java, v 0.1 2020年08月02日 20:56 xiangyong.ding Exp $ */public class BIOSocket { public static void main(String[] args) throws IOException { ServerSocket serverSocket = new ServerSocket(8090); System.out.println("step1: new ServerSocket "); while (true) { Socket client = serverSocket.accept(); System.out.println("step2: client\t" + client.getPort()); new Thread(() -> { try { InputStream in = client.getInputStream(); BufferedReader reader = new BufferedReader(new InputStreamReader(in)); while (true) { System.out.println(reader.readLine()); } } catch (IOException e) { e.printStackTrace(); } }).start(); } }} 

1 發(fā)生的系統(tǒng)調(diào)用

啟動時

socket(AF_INET, SOCK_STREAM, IPPROTO_IP) = 5bind(5, {sa_family=AF_INET, sin_port=htons(8090), sin_addr=inet_addr("0.0.0.0")}, 16) = 0listen(5, 50) = 0poll([{fd=5, events=POLLIN|POLLERR}], 1, -1) = 1 ([{fd=5, revents=POLLIN}])
poll函數(shù)會阻塞直到其中任何一個fd發(fā)生事件。

有客戶端連接后

  1. accept(5, {sa_family=AF_INET, sin_port=htons(10253), sin_addr=inet_addr("42.120.74.252")}, [16]) = 6clone(child_stack=0x7f013e5c4fb0, flags=CLONE_VM|CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|CLONE_SYSVSEM|CLONE_SETTLS|CLONE_PARENT_SETTID|CLONE_CHILD_CLEARTID, parent_tidptr=0x7f013e5c59d0, tls=0x7f013e5c5700, child_tidptr=0x7f013e5c59d0) = 13168poll([{fd=5, events=POLLIN|POLLERR}], 1, -1 

拋出線程(即我們代碼里的 new Thread() )后,繼續(xù)poll阻塞等待連接。

clone出來的線程

recvfrom(6, "hello,bio\n", 8192, 0, NULL, NULL) =
關于對recvfrom函數(shù)的說明,其中第四個參數(shù)0 表示這是一個阻塞調(diào)用。

客戶端發(fā)送數(shù)據(jù)后

recvfrom(6, "hello,bio\n", 8192, 0, NULL, NULL) = 10

2 優(yōu)缺點

優(yōu)點

代碼簡單,邏輯清晰。

缺點

由于stream的read操作是阻塞讀,面對多個連接時 每個連接需要每線程。無法處理大量連接(C10K問題)。

誤區(qū):可見JDK1.8中對于最初的BIO,在Linux OS下仍然使用的poll,poll本身也是相對比較高效的多路復用函數(shù)(支持非阻塞、多個socket同時檢查event),只是限于JDK最初的stream API限制,無法支持非阻塞讀取。

二 NIO(non block)

改進:使用NIO API,將阻塞變?yōu)榉亲枞?不需要大量線程。

  1. /** * Alipay.com Inc. Copyright (c) 2004-2020 All Rights Reserved. */package io;import java.io.IOException;import java.net.InetSocketAddress;import java.nio.ByteBuffer;import java.nio.channels.ServerSocketChannel;import java.nio.channels.SocketChannel;import java.util.LinkedList;/** * @author xiangyong.ding * @version $Id: NioSocket.java, v 0.1 2020年08月09日 11:25 xiangyong.ding Exp $ */public class NIOSocket { private static LinkedList< SocketChannel> clients = new LinkedList<>(); private static void startClientChannelHandleThread(){ new Thread(() -> { while (true){ ByteBuffer buffer = ByteBuffer.allocateDirect(4096); //處理客戶端連接 for (SocketChannel c : clients) { // 非阻塞, >0 表示讀取到的字節(jié)數(shù)量, 0或-1表示未讀取到或讀取異常 int num = 0; try { num = c.read(buffer); } catch (IOException e) { e.printStackTrace(); } if (num > 0) { buffer.flip(); byte[] clientBytes = new byte[buffer.limit()]; //從緩沖區(qū) 讀取到內(nèi)存中 buffer.get(clientBytes); System.out.println(c.socket().getPort() + ":" + new String(clientBytes)); //清空緩沖區(qū) buffer.clear(); } } } }).start(); } public static void main(String[] args) throws IOException { //new socket,開啟監(jiān)聽 ServerSocketChannel socketChannel = ServerSocketChannel.open(); socketChannel.bind(new InetSocketAddress(9090)); //設置阻塞接受客戶端連接 socketChannel.configureBlocking(true); //開始client處理線程 startClientChannelHandleThread(); while (true) { //接受客戶端連接; 非阻塞,無客戶端返回null(操作系統(tǒng)返回-1) SocketChannel client = socketChannel.accept(); if (client == null) { //System.out.println("no client"); } else { //設置讀非阻塞 client.configureBlocking(false); int port = client.socket().getPort(); System.out.println("client port :" + port); clients.add(client); } } }} 

1 發(fā)生的系統(tǒng)調(diào)用

主線程

  1. socket(AF_INET, SOCK_STREAM, IPPROTO_IP) = 4bind(4, {sa_family=AF_INET, sin_port=htons(9090), sin_addr=inet_addr("0.0.0.0")}, 16) = 0listen(450) = 0fcntl(4, F_SETFL, O_RDWR|O_NONBLOCK) = 0accept(40x7fe26414e6800x7fe26c376710) = -1 EAGAIN (Resource temporarily unavailable) 

有連接后,子線程

  1. read(60x7f3f415b1c504096) = -1 EAGAIN (Resource temporarily unavailable)read(60x7f3f415b1c504096) = -1 EAGAIN (Resource temporarily unavailable)... 

資源使用情況:

2 優(yōu)缺點

優(yōu)點

線程數(shù)大大減少。

缺點

需要程序自己掃描 每個連接read,需要 O(n)時間復雜度系統(tǒng)調(diào)用 (此時可能只有一個連接發(fā)送了數(shù)據(jù)),高頻系統(tǒng)調(diào)用(導致CPU 用戶態(tài)內(nèi)核態(tài)切換)高。導致CPU消耗很高。

三 多路復用器(select、poll、epoll)

改進:不需要用戶掃描所有連接,由kernel 給出哪些連接有數(shù)據(jù),然后應用從有數(shù)據(jù)的連接讀取數(shù)據(jù)。

1 epoll

  1. import java.net.InetSocketAddress;import java.nio.ByteBuffer;import java.nio.channels.SelectionKey;import java.nio.channels.Selector;import java.nio.channels.ServerSocketChannel;import java.nio.channels.SocketChannel;import java.util.Iterator;import java.util.LinkedList;import java.util.Set;/** * 多路復用socket * * @author xiangyong.ding * @version $Id: MultiplexingSocket.java, v 0.1 2020年08月09日 12:19 xiangyong.ding Exp $ */public class MultiplexingSocket { static ByteBuffer buffer = ByteBuffer.allocateDirect(4096); public static void main(String[] args) throws Exception { LinkedList< SocketChannel> clients = new LinkedList<>(); //1.啟動server //new socket,開啟監(jiān)聽 ServerSocketChannel socketChannel = ServerSocketChannel.open(); socketChannel.bind(new InetSocketAddress(9090)); //設置非阻塞,接受客戶端 socketChannel.configureBlocking(false); //多路復用器(JDK包裝的代理,select /poll/epoll/kqueue) Selector selector = Selector.open(); //java自動代理,默認為epoll //Selector selector = PollSelectorProvider.provider().openSelector();//指定為poll //將服務端socket 注冊到 多路復用器 socketChannel.register(selector, SelectionKey.OP_ACCEPT); //2. 輪訓多路復用器 // 先詢問有沒有連接,如果有則返回數(shù)量以及對應的對象(fd) while (selector.select() > 0) { System.out.println(); Set< SelectionKey> selectionKeys = selector.selectedKeys(); Iterator< SelectionKey> iter = selectionKeys.iterator(); while (iter.hasNext()) { SelectionKey key = iter.next(); iter.remove(); //2.1 處理新的連接 if (key.isAcceptable()) { //接受客戶端連接; 非阻塞,無客戶端返回null(操作系統(tǒng)返回-1) SocketChannel client = socketChannel.accept(); //設置讀非阻塞 client.configureBlocking(false); //同樣,把client也注冊到selector client.register(selector, SelectionKey.OP_READ); System.out.println("new client : " + client.getRemoteAddress()); } //2.2 處理讀取數(shù)據(jù) else if (key.isReadable()) { readDataFromSocket(key); } } } } protected static void readDataFromSocket(SelectionKey key) throws Exception { SocketChannel socketChannel = (SocketChannel) key.channel(); // 非阻塞, >0 表示讀取到的字節(jié)數(shù)量, 0或-1表示未讀取到或讀取異常 // 請注意:這個例子降低復雜度,不考慮報文大于buffer size的情況 int num = socketChannel.read(buffer); if (num > 0) { buffer.flip(); byte[] clientBytes = new byte[buffer.limit()]; //從緩沖區(qū) 讀取到內(nèi)存中 buffer.get(clientBytes); System.out.println(socketChannel.socket().getPort() + ":" + new String(clientBytes)); //清空緩沖區(qū) buffer.clear(); } }} 

2 發(fā)生的系統(tǒng)調(diào)用

啟動

  1. socket(AF_INET, SOCK_STREAM, IPPROTO_IP) = 4bind(4, {sa_family=AF_INET, sin_port=htons(9090), sin_addr=inet_addr("0.0.0.0")}, 16) = 0listen(450)fcntl(4, F_SETFL, O_RDWR|O_NONBLOCK) = 0epoll_create(256) = 7epoll_ctl(7, EPOLL_CTL_ADD, 5, {EPOLLIN, {u32=5, u64=4324783852322029573}}) = 0epoll_ctl(7, EPOLL_CTL_ADD, 4, {EPOLLIN, {u32=4, u64=158913789956}}) = 0epoll_wait(7 

關于對epoll_create(對應著Java的 Selector selector = Selector.open()) 的說明,本質(zhì)上是在內(nèi)存的操作系統(tǒng)保留區(qū),創(chuàng)建一個epoll數(shù)據(jù)結構。用于后面當有client連接時,向該epoll區(qū)中添加監(jiān)聽。

有連接

  1. epoll_wait(7,[{EPOLLIN, {u32=4, u64=158913789956}}], 8192, -1) = 1accept(4, {sa_family=AF_INET, sin_port=htons(29597), sin_addr=inet_addr("42.120.74.252")}, [16]) = 8fcntl(8, F_SETFL, O_RDWR|O_NONBLOCK) = 0epoll_ctl(7, EPOLL_CTL_ADD, 8, {EPOLLIN, {u32=8, u64=3212844375897800712}}) = 0 

關于epoll_ctl (對應著Java的 client.register(selector, SelectionKey.OP_READ) )。其中 EPOLLIN 恰好對應著Java的 SelectionKey.OP_READ 即監(jiān)聽數(shù)據(jù)到達讀取事件。

客戶端發(fā)送數(shù)據(jù)

  1. epoll_wait(7,[{EPOLLIN, {u32=8, u64=3212844375897800712}}], 8192, -1) = 1read(8"hello,multiplex\n"4096) = 16epoll_wait(7

note:epoll_wait第四個參數(shù)-1表示block。

poll 和 epoll 對比

根據(jù)“1.BIO”中的poll函數(shù)調(diào)用和epoll函數(shù)對比如下:

poll和epoll本質(zhì)上都是同步IO, 區(qū)別于BIO的是 多路復用充分降低了 system call,而epoll更進一步,再次降低了system call的時間復雜度。

3 優(yōu)缺點

優(yōu)點

線程數(shù)同樣很少,甚至可以把acceptor線程和worker線程使用同一個。
時間復雜度低,Java實現(xiàn)的Selector(在Linux OS下使用的epoll函數(shù))支持多個clientChannel事件的一次性獲取,且時間復雜度維持在O(1)。
CPU使用低:得益于Selector,我們不用向 “2.NIO”中需要自己一個個ClientChannel手動去檢查事件,因此使得CPU使用率大大降低。

缺點

數(shù)據(jù)處理麻煩:目前socketChannel.read 讀取數(shù)據(jù)完全是基于字節(jié)的,當我們需要需要作為HTTP服務網(wǎng)關時,對于HTTP協(xié)議的處理完全需要自己解析,這是個龐大、煩雜、容易出錯的工作。
性能現(xiàn)有socket數(shù)據(jù)的讀?。╯ocketChannel.read(buffer))全部通過一個buffer 緩沖區(qū)來接受,一旦連接多起來,這無疑是一個單線程讀取,性能無疑是個問題。那么此時buffer我們每次讀取都重新new出來呢?如果每次都new出來,這樣的內(nèi)存碎片對于GC無疑是一場災難。如何平衡地協(xié)調(diào)好buffer的共享,既保證性能,又保證線程安全,這是個難題。

四 Netty

1 研究的目標源碼(netty提供的入門example)

TelnetServer

  1. package telnet;import io.netty.bootstrap.ServerBootstrap;import io.netty.channel.EventLoopGroup;import io.netty.channel.nio.NioEventLoopGroup;import io.netty.channel.socket.nio.NioServerSocketChannel;import io.netty.handler.logging.LogLevel;import io.netty.handler.logging.LoggingHandler;import io.netty.handler.ssl.SslContext;import io.netty.handler.ssl.SslContextBuilder;import io.netty.handler.ssl.util.SelfSignedCertificate;/** * Simplistic telnet server. */public final class TelnetServer { static final boolean SSL = System.getProperty("ssl") != nullstatic final int PORT = Integer.parseInt(System.getProperty("port", SSL? "8992" : "8023")); public static void main(String[] args) throws Exception { // Configure SSL. final SslContext sslCtx; if (SSL) { SelfSignedCertificate ssc = new SelfSignedCertificate(); sslCtx = SslContextBuilder.forServer(ssc.certificate(), ssc.privateKey()).build(); } else { sslCtx = null; } EventLoopGroup bossGroup = new NioEventLoopGroup(1); EventLoopGroup workerGroup = new NioEventLoopGroup(); try { ServerBootstrap b = new ServerBootstrap(); b.group(bossGroup, workerGroup) .channel(NioServerSocketChannel.class) .handler(new LoggingHandler(LogLevel.INFO)) .childHandler(new TelnetServerInitializer(sslCtx)); b.bind(PORT).sync().channel().closeFuture().sync(); } finally { bossGroup.shutdownGracefully(); workerGroup.shutdownGracefully(); } }} 
  2. TelnetServerHandler 
  3.  
  4. package telnet; 
  5.  
  6. import io.netty.channel.ChannelFuture;import io.netty.channel.ChannelFutureListener;import io.netty.channel.ChannelHandler.Sharable;import io.netty.channel.ChannelHandlerContext;import io.netty.channel.SimpleChannelInboundHandler;import java.net.InetAddress;import java.util.Date;/** * Handles a server-side channel. */@Sharablepublic class TelnetServerHandler extends SimpleChannelInboundHandler< String> { @Override public void channelActive(ChannelHandlerContext ctx) throws Exception { // Send greeting for a new connection. ctx.write("Welcome to " + InetAddress.getLocalHost().getHostName() + "!\r\n"); ctx.write("It is " + new Date() + " now.\r\n"); ctx.flush(); } @Override public void channelRead0(ChannelHandlerContext ctx, String request) throws Exception { // Generate and write a response. String response; boolean close = false; if (request.isEmpty()) { response = "Please type something.\r\n"; } else if ("bye".equals(request.toLowerCase())) { response = "Have a good day!\r\n"; close = true; } else { response = "Did you say '" + request + "'?\r\n"; } // We do not need to write a ChannelBuffer here. // We know the encoder inserted at TelnetPipelineFactory will do the conversion. ChannelFuture future = ctx.write(response); // Close the connection after sending 'Have a good day!' // if the client has sent 'bye'. if (close) { future.addListener(ChannelFutureListener.CLOSE); } } @Override public void channelReadComplete(ChannelHandlerContext ctx) { ctx.flush(); } @Override public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) { cause.printStackTrace(); ctx.close(); }} 
  7. TelnetServerInitializer 
  8.  
  9. package telnet;import io.netty.channel.ChannelInitializer;import io.netty.channel.ChannelPipeline;import io.netty.channel.socket.SocketChannel;import io.netty.handler.codec.DelimiterBasedFrameDecoder;import io.netty.handler.codec.Delimiters;import io.netty.handler.codec.string.StringDecoder;import io.netty.handler.codec.string.StringEncoder;import io.netty.handler.ssl.SslContext;/** * Creates a newly configured {@link ChannelPipeline} for a new channel. */public class TelnetServerInitializer extends ChannelInitializer< SocketChannel> { private static final StringDecoder DECODER = new StringDecoder(); private static final StringEncoder ENCODER = new StringEncoder(); private static final TelnetServerHandler SERVER_HANDLER = new TelnetServerHandler(); private final SslContext sslCtx; public TelnetServerInitializer(SslContext sslCtx) { this.sslCtx = sslCtx; } @Override public void initChannel(SocketChannel ch) throws Exception { ChannelPipeline pipeline = ch.pipeline(); if (sslCtx != null) { pipeline.addLast(sslCtx.newHandler(ch.alloc())); } // Add the text line codec combination first, pipeline.addLast(new DelimiterBasedFrameDecoder(8192, Delimiters.lineDelimiter())); // the encoder and decoder are static as these are sharable pipeline.addLast(DECODER); pipeline.addLast(ENCODER); // and then business logic. pipeline.addLast(SERVER_HANDLER); }} 

2 啟動后的系統(tǒng)調(diào)用

主線程(23109)

  1. ## 256無實際作用,這里只為了兼容舊版kernel apiepoll_create(256) = 7epoll_ctl(7, EPOLL_CTL_ADD, 5, {EPOLLIN, {u32=5, u64=5477705356928876549}}) = 0epoll_create(256) = 10epoll_ctl(10, EPOLL_CTL_ADD, 8, {EPOLLIN, {u32=8, u64=17041805914081853448}}) = 0epoll_create(256) = 13epoll_ctl(13, EPOLL_CTL_ADD, 11, {EPOLLIN, {u32=11, u64=17042151607409573899}}) = 0epoll_create(256) = 16epoll_ctl(16, EPOLL_CTL_ADD, 14, {EPOLLIN, {u32=14, u64=17042497300737294350}}) = 0epoll_create(256) = 19epoll_ctl(19, EPOLL_CTL_ADD, 17, {EPOLLIN, {u32=17, u64=17042561450368827409}}) = 0epoll_create(256) = 10socket(AF_INET, SOCK_STREAM, IPPROTO_IP) = 20clone(child_stack=0x7fc3c509afb0, flags=CLONE_VM|CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|CLONE_SYSVSEM|CLONE_SETTLS|CLONE_PARENT_SETTID|CLONE_CHILD_CLEARTID, parent_tidptr=0x7fc3c509b9d0, tls=0x7fc3c509b700, child_tidptr=0x7fc3c509b9d0) = 23130 

概括為:

向OS新建socket,并開啟clone boss線程23130。
為BOSS創(chuàng)建了一個epoll(論證參見下面“boss”),每個worker創(chuàng)建一個epoll數(shù)據(jù)結構(本質(zhì)上是在kernel內(nèi)存區(qū)創(chuàng)建了一個數(shù)據(jù)結構,用于后續(xù)監(jiān)聽)。
創(chuàng)建boss線程監(jiān)聽的socket(本質(zhì)上在kernel中創(chuàng)建一個數(shù)據(jù)結構)。
boss(23130)

bind(20, {sa_family=AF_INET, sin_port=htons(8023), sin_addr=inet_addr("0.0.0.0")}, 16) = 0listen(20, 128) = 0getsockname(20, {sa_family=AF_INET, sin_port=htons(8023), sin_addr=inet_addr("0.0.0.0")}, [16]) = 0getsockname(20, {sa_family=AF_INET, sin_port=htons(8023), sin_addr=inet_addr("0.0.0.0")}, [16]) = 0 ##將fd為7號epoll和fd為20號的socket綁定,事件:epoll_ctl_add和epoll_ctl_modepoll_ctl(7, EPOLL_CTL_ADD, 20, {EPOLLIN, {u32=20, u64=14198059139132817428}}) = 0epoll_ctl(7, EPOLL_CTL_MOD, 20, {EPOLLIN, {u32=20, u64=20}}) = 0epoll_wait(7, [{EPOLLIN, {u32=5, u64=17295150779149058053}}], 8192, 1000) = 1epoll_wait(7, [], 8192, 1000) = 0(不斷輪訓,1S超時一次)

概括為:

將上一步中main線程創(chuàng)建的fd:20綁定端口8023,并開啟監(jiān)聽(網(wǎng)卡負責監(jiān)聽和接受連接和數(shù)據(jù),kernel則負責路由到具體進程,具體參見:關于socket和bind和listen,TODO )。
將7號socket對應的fd綁定到20號對應的epoll數(shù)據(jù)結構上去(都是操作kernel中的內(nèi)存)。
開始1S中一次阻塞等待epoll有任何連接或數(shù)據(jù)到達。

3 客戶端連接

boss (23130)

  1. accept(20, {sa_family=AF_INET, sin_port=htons(11144), sin_addr=inet_addr("42.120.74.122")}, [16]) = 24getsockname(24, {sa_family=AF_INET, sin_port=htons(8023), sin_addr=inet_addr("192.168.0.120")}, [16]) = 0getsockname(24, {sa_family=AF_INET, sin_port=htons(8023), sin_addr=inet_addr("192.168.0.120")}, [16]) = 0setsockopt(24, SOL_TCP, TCP_NODELAY, [1], 4) = 0getsockopt(24, SOL_SOCKET, SO_SNDBUF, [87040], [4]) = 0getsockopt(24, SOL_SOCKET, SO_SNDBUF, [87040], [4]) = 0##拋出 work線程clone(child_stack=0x7fc3c4c98fb0, flags=CLONE_VM|CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|CLONE_SYSVSEM|CLONE_SETTLS|CLONE_PARENT_SETTID|CLONE_CHILD_CLEARTID, parent_tidptr=0x7fc3c4c999d0, tls=0x7fc3c4c99700, child_tidptr=0x7fc3c4c999d0) = 2301 
  2. worker (2301
  3.  
  4. writev(24, [{"Welcome to iZbp14e1g9ztpshfrla9m"..., 37}, {"It is Sun Aug 23 15:44:14 CST 20"..., 41}], 2) = 78epoll_ctl(13, EPOLL_CTL_ADD, 24, {EPOLLIN, {u32=24, u64=24}}) = 0epoll_ctl(13, EPOLL_CTL_MOD, 24, {EPOLLIN, {u32=24, u64=14180008216221450264}}) = 0epoll_wait(13, [{EPOLLIN, {u32=11, u64=17042151607409573899}}], 81921000) = 1 read(11"\1"128) = 1##開始無限loopepoll_wait(13, [], 81921000) = 0epoll_wait(13, [{EPOLLIN, {u32=24, u64=24}}], 81921000) = 1 

概括:

當BOSS輪訓epoll_wait等到了連接后,首先accept得到該socket對應的fd。
連接建立后 BOSS立馬拋出一個線程(clone函數(shù))。
worker(即新建的線程)寫入了一段數(shù)據(jù)(這里是業(yè)務邏輯)。
worker將該client對應的fd綁定到了13號epoll上。
worker繼續(xù)輪訓監(jiān)聽13號epoll。

4 客戶端主動發(fā)送數(shù)據(jù)

worker(2301)

  1. read(24"i am daojian\r\n"1024) = 14write(24"Did you say 'i am daojian'?\r\n"29) = 29##繼續(xù)無限loopepoll_wait(13, [], 81921000) = 0 

概括為:

wait到數(shù)據(jù)后,立即read到用戶控件內(nèi)存中(讀取1024個字節(jié)到 用戶控件某個buff中)。
寫入數(shù)據(jù)(業(yè)務邏輯,不必太關注)。
繼續(xù)輪訓等待13號epoll。

5 客戶端發(fā)送bye報文,服務器斷開TCP連接

worker(2301)

  1. read(24"bye\r\n"1024) = 5write(24"Have a good day!\r\n"18) = 18getsockopt(24, SOL_SOCKET, SO_LINGER, {onoff=0, linger=0}, [8]) = 0dup2(2524) = 24##從epoll數(shù)據(jù)結構中(OS)中刪除fd為24的socketepoll_ctl(13, EPOLL_CTL_DEL, 240x7f702dd531e0) = -1 ENOENT##關閉24 socketclose(24) = 0##繼續(xù)等待13 epoll數(shù)據(jù)epoll_wait(13, [], 81921000) = 0 

斷開客戶端連接概括為:

從epoll中刪除該客戶端對應的fd(這里觸發(fā)源頭沒找到,可能是boss)。
close關閉客戶端24號fd。
繼續(xù)輪訓epoll。

6 五個客戶端同時連接

boss線程(23130)

  1. accept(20, {sa_family=AF_INET, sin_port=htons(1846), sin_addr=inet_addr("42.120.74.122")}, [16]) = 24clone(child_stack=0x7f702cc51fb0, flags=CLONE_VM|CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|CLONE_SYSVSEM|CLONE_SETTLS|CLONE_PARENT_SETTID|CLONE_CHILD_CLEARTID, parent_tidptr=0x7f702cc529d0, tls=0x7f702cc52700, child_tidptr=0x7f702cc529d0) = 10035accept(20, {sa_family=AF_INET, sin_port=htons(42067), sin_addr=inet_addr("42.120.74.122")}, [16]) = 26clone(child_stack=0x7f702cb50fb0, flags=CLONE_VM|CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|CLONE_SYSVSEM|CLONE_SETTLS|CLONE_PARENT_SETTID|CLONE_CHILD_CLEARTID, parent_tidptr=0x7f702cb519d0, tls=0x7f702cb51700, child_tidptr=0x7f702cb519d0) = 10067... 
  2. woker線程(10035,第一個連接) 
  3.  
  4. epoll_ctl(13, EPOLL_CTL_ADD, 24, {EPOLLIN, {u32=24, u64=24}}) = 0epoll_ctl(13, EPOLL_CTL_MOD, 24, {EPOLLIN, {u32=24, u64=3226004877247250456}}) = 0epoll_wait(13, [{EPOLLIN, {u32=11, u64=17042151607409573899}}], 81921000) = 1 = 1epoll_wait(13, [], 81921000) = 0 
  5. worker線程(10067,第二個連接) 
  6.  
  7. epoll_ctl(16, EPOLL_CTL_ADD, 26, {EPOLLIN, {u32=26, u64=26}}) = 0epoll_ctl(16, EPOLL_CTL_MOD, 26, {EPOLLIN, {u32=26, u64=3221483685433835546}}) = 0epoll_wait(16, [{EPOLLIN, {u32=14, u64=17042497300737294350}}], 81921000) = 1epoll_wait(16, [], 81921000) = 0epoll_wait(16, [], 81921000) = 0 
  8. worker線程(10067,第二個連接) 
  9.  
  10. epoll_ctl(19, EPOLL_CTL_ADD, 27, {EPOLLIN, {u32=27, u64=27}}) = 0epoll_ctl(19, EPOLL_CTL_MOD, 27, {EPOLLIN, {u32=27, u64=3216966479350071323}}) = 0 
  11. worker線程(8055,第四個連接) 
  12.  
  13. epoll_ctl(10, EPOLL_CTL_ADD, 28, {EPOLLIN, {u32=28, u64=28}}) = 0epoll_ctl(10, EPOLL_CTL_MOD, 28, {EPOLLIN, {u32=28, u64=3302604828697427996}}) = 0 
  14. worker線程(10035,第五個連接,不在clone線程,而是復用了第一個epoll對應的worker) 
  15.  
  16. epoll_ctl(13, EPOLL_CTL_ADD, 29, {EPOLLIN, {u32=29, u64=29}}) = 0epoll_ctl(13, EPOLL_CTL_MOD, 29, {EPOLLIN, {u32=29, u64=29}}) = 0 

概括為:

epoll和boss、worker之間的關系:一共有4個worker對應著4個epoll對象,boss和每個worker都有對應自己的epoll。
boss根據(jù)epoll數(shù)量,平衡分配連接到每個worker對應的epoll中。

7 總結

下圖通過對系統(tǒng)調(diào)用的調(diào)查得出 netty 和 kernel 交互圖:

初始化直接創(chuàng)建5個epoll,其中7號為boss使用,專門用于處理和客戶端連接;其余4個用來給worker使用,用戶處理和客戶端的數(shù)據(jù)交互。

work的線程數(shù)量,取決于初始化時創(chuàng)建了幾個epoll,worker的復用本質(zhì)上是epoll的復用。

work之間為什么要獨立使用epoll?為什么不共享?

為了避免各個worker之間發(fā)生爭搶連接處理,netty直接做了物理隔離,避免競爭。各個worker只負責處理自己管理的連接,并且后續(xù)該worker中的每個client的讀寫操作完全由 該線程單獨處理,天然避免了資源競爭,避免了鎖。
worker單線程,性能考慮:worker不僅僅要epoll_wait,還是處理read、write邏輯,加入worker處理了過多的連接,勢必造成這部分消耗時間片過多,來不及處理更多連接,性能下降。

8 優(yōu)缺點

優(yōu)點

數(shù)據(jù)處理:netty提供了大量成熟的數(shù)據(jù)處理組件(ENCODER、DECODER),HTTP、POP3拿來即用。
編碼復雜度、可維護性:netty充分使得業(yè)務邏輯與網(wǎng)絡處理解耦,只需要少量的BootStrap配置即可,更多的集中在業(yè)務邏輯處理上。
性能:netty提供了的ByteBuf(底層Java原生的ByteBuffer),提供了池化的ByteBuf,兼顧讀取性能和ByteBuf內(nèi)存分配(在后續(xù)文檔中會再做詳解)。
缺點

入門有一定難度。

五 AIO

1 啟動

main線程

  1. epoll_create(256) = 5epoll_ctl(5, EPOLL_CTL_ADD, 6, {EPOLLIN, {u32=6, u64=11590018039084482566}}) = 0##創(chuàng)建BOSS 線程(Proactor)clone(child_stack=0x7f340ac06fb0, flags=CLONE_VM|CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|CLONE_SYSVSEM|CLONE_SETTLS|CLONE_PARENT_SETTID|CLONE_CHILD_CLEARTID, parent_tidptr=0x7f340ac079d0, tls=0x7f340ac07700, child_tidptr=0x7f340ac079d0) = 22704socket(AF_INET6, SOCK_STREAM, IPPROTO_IP) = 8setsockopt(8, SOL_IPV6, IPV6_V6ONLY, [0], 4) = 0setsockopt(8, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0bind(8, {sa_family=AF_INET6, sin6_port=htons(9090), inet_pton(AF_INET6, "::", &sin6_addr), sin6_flowinfo=0, sin6_scope_id=0}, 28) = 0listen(850)accept(80x7f67d01b31200x7f67d9246690) = -1epoll_ctl(5, EPOLL_CTL_MOD, 8, {EPOLLIN|EPOLLONESHOT, {u32=8, u64=15380749440025362440}}) = -1 ENOENT (No such file or directory)epoll_ctl(5, EPOLL_CTL_ADD, 8, {EPOLLIN|EPOLLONESHOT, {u32=8, u64=15380749440025362440}}) = 0read(0
  2. 22704(BOSS 線程(Proactor)) 
  3.  
  4. epoll_wait(5, < unfinished ...> 

2 請求連接

  1. **22704(BOSS 線程(Proactor))處理連接**epoll_wait(5,[{EPOLLIN, {u32=9, u64=4294967305}}], 512, -1) = 1accept(8, {sa_family=AF_INET6, sin6_port=htons(55320), inet_pton(AF_INET6, "::ffff:36.24.32.140", &sin6_addr), sin6_flowinfo=0, sin6_scope_id=0}, [28]) = 9clone(child_stack=0x7ff35c99ffb0, flags=CLONE_VM|CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|CLONE_SYSVSEM|CLONE_SETTLS|CLONE_PARENT_SETTID|CLONE_CHILD_CLEARTID, parent_tidptr=0x7ff35c9a09d0, tls=0x7ff35c9a0700, child_tidptr=0x7ff35c9a09d0) = 26241epoll_wait(5, < unfinished ...> 
  2. 26241 
  3.  
  4. #將client 連接的FD加入到BOSS的epoll中,以便BOSS線程監(jiān)聽網(wǎng)絡事件epoll_ctl(5, EPOLL_CTL_MOD, 9, {EPOLLIN|EPOLLONESHOT, {u32=9, u64=4398046511113}}) = -1 ENOENT (No such file or directory)epoll_ctl(5, EPOLL_CTL_ADD, 9, {EPOLLIN|EPOLLONESHOT, {u32=9, u64=4398046511113}}) = 0accept(80x7ff3440008c00x7ff35c99f4d0) = -1 EAGAIN (Resource temporarily unavailable)epoll_ctl(5, EPOLL_CTL_MOD, 8, {EPOLLIN|EPOLLONESHOT, {u32=8, u64=8}}) = 0 

3 客戶端發(fā)送數(shù)據(jù)

22704(BOSS 線程(Proactor))處理連接

  1. epoll_wait(5,[{EPOLLIN, {u32=9, u64=4294967305}}], 512, -1) = 1##數(shù)據(jù)讀出read(9"daojian111\r\n"1024) = 12##數(shù)據(jù)處理交給其他線程,這里由于線程池為空,需要先clone線程clone(child_stack=0x7ff35c99ffb0, flags=CLONE_VM|CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|CLONE_SYSVSEM|CLONE_SETTLS|CLONE_PARENT_SETTID|CLONE_CHILD_CLEARTID, parent_tidptr=0x7ff35c9a09d0, tls=0x7ff35c9a0700, child_tidptr=0x7ff35c9a09d0) = 26532 

復制線程處理,線程號26532

  1. write(1"pool-1-thread-2-10received : dao"..., 41) = 41write(1"\n"1)accept(80x7f11c400b5f00x7f11f42fd4d0) = -1 EAGAIN (Resource temporarily unavailable)epoll_ctl(5, EPOLL_CTL_MOD, 8, {EPOLLIN|EPOLLONESHOT, {u32=8, u64=8}}) = 0 

4 總結

從系統(tǒng)調(diào)用角度,Java的AIO事實上是以多路復用(Linux上為epoll)等同步IO為基礎,自行實現(xiàn)了異步事件分發(fā)。
BOSS Thread負責處理連接,并分發(fā)事件。
WORKER Thread只負責從BOSS接收的事件執(zhí)行,不負責任何網(wǎng)絡事件監(jiān)聽。

5 優(yōu)缺點

優(yōu)點

相比于前面的BIO、NIO,AIO已經(jīng)封裝好了任務調(diào)度,使用時只需關心任務處理。

缺點

事件處理完全由Thread Pool完成,對于同一個channel的多個事件可能會出現(xiàn)并發(fā)問題。
相比netty,buffer API不友好容易出錯;編解碼工作復雜。

相關鏈接
https://man7.org/linux/man-pages/man2/poll.2.html
https://man7.org/linux/man-pages/man2/recvfrom.2.html
https://man7.org/linux/man-pages/man2/epoll_create.2.html
https://man7.org/linux/man-pages/man2/epoll_ctl.2.html

 

責任編輯:梁菲 來源: 阿里云云棲號
相關推薦

2021-06-30 15:25:13

操作系統(tǒng)Java

2019-12-12 10:57:25

LinuxIOCPU

2019-12-17 18:04:09

操作系統(tǒng)Linux中央處理器

2024-04-17 09:52:00

操作系統(tǒng)多線程內(nèi)存

2023-04-26 08:50:23

IO模型操作系統(tǒng)Java

2022-08-01 07:09:48

Docker操作系統(tǒng)抽象重組

2014-10-29 19:52:31

普華操作系統(tǒng)

2010-04-22 14:53:07

Aix操作系統(tǒng)

2010-04-15 15:46:57

Unix操作系統(tǒng)

2010-04-09 17:25:13

Unix操作系統(tǒng)

2024-11-15 12:24:53

2009-10-23 09:12:23

CLR與操作系統(tǒng)關系

2010-08-02 10:55:29

vSphere 4.1

2009-12-09 17:25:19

Linux操作系統(tǒng)

2009-12-22 10:56:33

2023-01-13 14:35:00

攜程實踐

2013-08-23 11:14:46

操作系統(tǒng)專家移動操作系統(tǒng)

2013-04-17 16:36:48

2025-03-04 09:02:25

JavaSPI機制

2010-01-06 10:37:55

Ubuntu操作系統(tǒng)
點贊
收藏

51CTO技術棧公眾號