面對千萬級數據查詢,CK、ES、RediSearch誰才是王炸?
前言
在開發(fā)中遇到一個業(yè)務訴求,需要在千萬量級的底池數據中篩選出不超過 10W 的數據,并根據配置的權重規(guī)則進行排序、打散(如同一個類目下的商品數據不能連續(xù)出現 3 次)。
下面對該業(yè)務訴求的實現,設計思路和方案優(yōu)化進行介紹,對「千萬量級數據中查詢 10W 量級的數據」設計了如下方案:
- 多線程 + CK 翻頁方案
- ES scroll scan 深翻頁方案
- ES + Hbase 組合方案
- RediSearch + RedisJSON 組合方案
一、初版設計方案
整體方案設計為:
- 先根據配置的「篩選規(guī)則」,從底池表中篩選出「目標數據」。
- 在根據配置的「排序規(guī)則」,對「目標數據」進行排序,得到「結果數據」。
技術方案如下:
- 每天運行導數任務,把現有的千萬量級的底池數據(Hive 表)導入到 Clickhouse 中,后續(xù)使用 CK 表進行數據篩選。
- 將業(yè)務配置的篩選規(guī)則和排序規(guī)則,構建為一個「篩選 + 排序」對象 SelectionQueryCondition。
- 從 CK 底池表取「目標數據」時,開啟多線程,進行分頁篩選,將獲取到的「目標數據」存放到 result 列表中。
//分頁大小 默認 5000
int pageSize = this.getPageSize();
//頁碼數
int pageCnt = totalNum / this.getPageSize() + 1;
List<Map<String, Object>> result = Lists.newArrayList();
List<Future<List<Map<String, Object>>>> futureList = new ArrayList<>(pageCnt);
//開啟多線程調用
for (int i = 1; i <= pageCnt; i++) {
//將業(yè)務配置的篩選規(guī)則和排序規(guī)則 構建為 SelectionQueryCondition 對象
SelectionQueryCondition selectionQueryCondition = buildSelectionQueryCondition(selectionQueryRuleData);
selectionQueryCondition.setPageSize(pageSize);
selectionQueryCondition.setPage(i);
futureList.add(selectionQueryEventPool.submit(new QuerySelectionDataThread(selectionQueryCondition)));
}
for (Future<List<Map<String, Object>>> future : futureList) {
//RPC 調用
List<Map<String, Object>> queryRes = future.get(20, TimeUnit.SECONDS);
if (CollectionUtils.isNotEmpty(queryRes)) {
// 將目標數據存放在 result 中
result.addAll(queryRes);
}
}
- 對目標數據 result 進行排序,得到最終的「結果數據」。
二、CK分頁查詢
在「初版設計方案」章節(jié)的第 3 步提到了「從 CK 底池表取目標數據時,開啟多線程,進行分頁篩選」。此處對 CK 分頁查詢進行介紹。
- 封裝了 queryPoolSkuList 方法,負責從 CK 表中獲得目標數據。該方法內部調用了 sqlSession.selectList 方法。
public List<Map<String, Object>> queryPoolSkuList( Map<String, Object> params ) {
List<Map<String, Object>> resultMaps = new ArrayList<>();
QueryCondition queryCondition = parseQueryCondition(params);
List<Map<String, Object>> mapList = lianNuDao.queryPoolSkuList(getCkDt(),queryCondition);
if (CollectionUtils.isNotEmpty(mapList)) {
for (Map<String,Object> data : mapList) {
resultMaps.add(camelKey(data));
}
}
return resultMaps;
}
// lianNuDao.queryPoolSkuList
@Autowired
@Qualifier("ckSqlNewSession")
private SqlSession sqlSession;
public List<Map<String, Object>> queryPoolSkuList( String dt, QueryCondition queryCondition ) {
queryCondition.setDt(dt);
queryCondition.checkMultiQueryItems();
return sqlSession.selectList("LianNu.queryPoolSkuList",queryCondition);
}
- sqlSession.selectList 方法中調用了和 CK 交互的 queryPoolSkuList 查詢方法,部分代碼如下。
<select id="queryPoolSkuList" parameterType="com.jd.bigai.domain.liannu.QueryCondition" resultType="java.util.Map">
select sku_pool_id,i
tem_sku_id,
skuPoolName,
price,
businessType
from liannu_sku_pool_indicator_all
where
dt=#{dt}
and
<foreach collection="queryItems" separator=" and " item="queryItem" open=" " close=" " >
<choose>
<when test="queryItem.type == 'equal'">
${queryItem.field} = #{queryItem.value}
</when>
</choose>
</foreach>
<if test="orderBy == null">
group by sku_pool_id,item_sku_id
</if>
<if test="orderBy != null">
group by sku_pool_id,item_sku_id,${orderBy} order by ${orderBy} ${orderAd}
</if>
<if test="limitEnd != 0">
limit #{limitStart},#{limitEnd}
</if>
</select>
- 可以看到,在 CK 分頁查詢時,是通過 limit #{limitStart},#{limitEnd} 實現的分頁。
limit 分頁方案,在「深翻頁」時會存在性能問題。初版方案上線后,在 1000W 量級的底池數據中篩選 10W 的數據,最壞耗時會達到 10s~18s 左右。
三、使用ES Scroll Scan優(yōu)化深翻頁
對于 CK 深翻頁時候的性能問題,進行了優(yōu)化,使用 Elasticsearch 的 scroll scan 翻頁方案進行優(yōu)化。
1、ES的翻頁方案
ES 翻頁,有下面幾種方案:
- from + size 翻頁
- scroll 翻頁
- scroll scan 翻頁
- search after 翻頁
對上述幾種翻頁方案,查詢不同數目的數據,耗時數據如下表。
2、耗時數據
此處,分別使用 Elasticsearch 的 scroll scan 翻頁方案、初版中的 CK 翻頁方案進行數據查詢,對比其耗時數據。
如上測試數據,可以發(fā)現,以十萬,百萬,千萬量級的底池為例。
- 底池量級越大,查詢相同的數據量,耗時越大。
- 查詢結果 3W 以下時,ES 性能優(yōu);查詢結果 5W 以上時,CK 多線程性能優(yōu)。
四、ES+Hbase組合查詢方案
在「使用 ES Scroll Scan 優(yōu)化深翻頁」中,使用 Elasticsearch 的 scroll scan 翻頁方案對深翻頁問題進行了優(yōu)化,但在實現時為單線程調用,所以最終測試耗時數據并不是特別理想,和 CK 翻頁方案性能差不多。
在調研階段發(fā)現,從底池中取出 10W 的目標數據時,一個商品包含多個字段的信息(CK 表中一行記錄有 150 個字段信息),如價格、會員價、學生價、庫存、好評率等。對于一行記錄,當減少獲取字段的個數時,查詢耗時會有明顯下降。如對 sku1的商品,從之前獲取價格、會員價、學生價、親友價、庫存等 100 個字段信息,縮減到只獲取價格、庫存這兩個字段信息。
如下圖所示,使用 ES 查詢方案,對查詢同樣條數的場景(從千萬級底池中篩選出 7W+ 條數據),獲取的每條記錄的字段個數從 32 縮減到 17,再縮減到 1個(其實是兩個字段,一個是商品唯一標識 sku_id,另一個是 ES 對每條文檔記錄的 doc_id)時,查詢的耗時會從 9.3s 下降到 4.2s,再下降到 2.4s。
從中可以得出如下結論:
- 一次 ES 查詢中,若查詢字段和信息較多,fetch 階段的耗時,遠大于 query 階段的耗時。
- 一次 ES 查詢中,若查詢字段和信息較多,通過減少不必要的查詢字段,可以顯著縮短查詢耗時。
下面對結論中涉及的 query 和 fetch 查詢階段進行補充說明。
1、ES查詢的兩個階段:query和fetch
在 ES 中,搜索一般包括兩個階段,query 和 fetch 階段。
- query 階段
根據查詢條件,確定要取哪些文檔(doc),篩選出文檔 ID(doc_id)。
- fetch 階段
根據 query 階段返回的文檔 ID(doc_id),取出具體的文檔(doc)。
2、ES的filesystem cache
1)ES 會將磁盤中的數據自動緩存到 filesystem cache,在內存中查找,提升了速度。
2)若 filesystem cache 無法容納索引數據文件,則會基于磁盤查找,此時查詢速度會明顯變慢。
3)若數量兩過大,基于「ES 查詢的的 query 和 fetch 兩個階段」,可使用 ES + HBase 架構,保證 ES 的數據量小于 filesystem cache,保證查詢速度。
3、組合使用Hbase
在上文調研的基礎上,發(fā)現「減少不必要的查詢展示字段」可以明顯縮短查詢耗時。沿著這個優(yōu)化思路,參考相關資料設計了一種新的查詢方案。
- ES 僅用于條件篩選,ES 的查詢結果僅包含記錄的唯一標識 sku_id(其實還包含 ES 為每條文檔記錄的 doc_id)。
- Hbase 是列存儲數據庫,每列數據有一個 rowKey。利用 rowKey 篩選一條記錄時,復雜度為 O(1)。(類似于從 HashMap 中根據 key 取 value)。
- 根據 ES 查詢返回的唯一標識 sku_id,作為 Hbase 查詢中的 rowKey,在 O(1) 復雜度下獲取其他信息字段,如價格,庫存等。
使用 ES + Hbase 組合查詢方案,在線上進行了小規(guī)模的灰度測試。在 1000W 量級的底池數據中篩選 10W 的數據,對比 CK 翻頁方案,最壞耗時從 10~18s 優(yōu)化到了 3~6s 左右。
也應該看到,使用 ES + Hbase 組合查詢方案,會增加系統(tǒng)復雜度,同時數據也需要同時存儲到 ES 和 Hbase。
五、RediSearch+RedisJSON優(yōu)化方案
RediSearch 是基于 Redis 構建的分布式全文搜索和聚合引擎,能以極快的速度在 Redis 數據集上執(zhí)行復雜的搜索查詢。RedisJSON 是一個 Redis 模塊,在 Redis 中提供 JSON 支持。RedisJSON 可以和 RediSearch 無縫配合,實現索引和查詢 JSON 文檔。
根據一些參考資料,RediSearch + RedisJSON 可以實現極高的性能,可謂碾壓其他 NoSQL 方案。在后續(xù)版本迭代中,可考慮使用該方案來進一步優(yōu)化。
下面給出 RediSearch + RedisJSON 的部分性能數據。
1、RediSearch 性能數據
在同等服務器配置下索引了 560 萬個文檔 (5.3GB),RediSearch 構建索引的時間為 221 秒,而 Elasticsearch 為 349 秒。RediSearch 比 ES 快了 58%。
數據建立索引后,使用 32 個客戶端對兩個單詞進行檢索,RediSearch 的吞吐量達到 12.5K ops/sec,ES 的吞吐量為 3.1K ops/sec,RediSearch 比ES 要快 4 倍。同時,RediSearch 的延遲為 8ms,而 ES 為 10ms,RediSearch 延遲稍微低些。
2、RedisJSON 性能數據
根據官網的性能測試報告,RedisJson + RedisSearch 可謂碾壓其他 NoSQL。
- 對于隔離寫入(isolated writes),RedisJSON 比 MongoDB 快 5.4 倍,比 ES 快 200 倍以上。
- 對于隔離讀?。╥solated reads),RedisJSON 比 MongoDB 快 12.7 倍,比 ES 快 500 倍以上。
在混合工作負載場景中,實時更新不會影響 RedisJSON 的搜索和讀取性能,而 ES 會受到影響。
- RedisJSON 支持的操作數/秒比 MongoDB 高約 50 倍,比 ES 高 7 倍/秒。
- RedisJSON 的延遲比 MongoDB 低約 90 倍,比 ES 低 23.7 倍。
此外,RedisJSON 的讀取、寫入和負載搜索延遲,在更高的百分位數中遠比 ES 和 MongoDB 穩(wěn)定。當增加寫入比率時,RedisJSON 還能處理越來越高的整體吞吐量。而當寫入比率增加時,ES 會降低它可以處理的整體吞吐量。
總結
本文從一個業(yè)務訴求觸發(fā),對「千萬量級數據中查詢 10W 量級的數據」介紹了不同的設計方案。對于「在 1000W 量級的底池數據中篩選 10W 的數據」的場景,不同方案的耗時如下:
- 多線程 + CK 翻頁方案,最壞耗時為 10s~18s。
- 單線程 + ES scroll scan 深翻頁方案,相比 CK 方案,并未見到明顯優(yōu)化。
- ES + Hbase 組合方案,最壞耗時優(yōu)化到了 3s~6s。
- RediSearch + RedisJSON 組合方案,后續(xù)會實測該方案的耗時。