自拍偷在线精品自拍偷,亚洲欧美中文日韩v在线观看不卡

基于規(guī)則的人工智能vs機(jī)器學(xué)習(xí)

人工智能
基于規(guī)則的人工智能是一種基于一組預(yù)定規(guī)則的AI系統(tǒng)。這些規(guī)則是由人類(lèi)創(chuàng)建的,并定義了系統(tǒng)在不同情況下將采取的行動(dòng)。

機(jī)器學(xué)習(xí)系統(tǒng)從過(guò)去的數(shù)據(jù)中學(xué)習(xí)并自主適應(yīng)新情況,而基于規(guī)則的系統(tǒng)則依賴(lài)于人為干預(yù)進(jìn)行任何修改。

什么是基于規(guī)則的人工智能?

基于規(guī)則的人工智能是一種基于一組預(yù)定規(guī)則的AI系統(tǒng)。這些規(guī)則是由人類(lèi)創(chuàng)建的,并定義了系統(tǒng)在不同情況下將采取的行動(dòng)。

例如,如果發(fā)生X,則應(yīng)執(zhí)行Y。基于規(guī)則的人工智能本質(zhì)上是確定性的,這意味著它采用因果方法。

基于規(guī)則的人工智能模型需要基本的數(shù)據(jù)和信息才能成功運(yùn)行,而且它們僅限于執(zhí)行編程的任務(wù)和功能。它們是機(jī)器人過(guò)程自動(dòng)化的一種更高級(jí)的形式,可用于數(shù)據(jù)輸入、文檔分類(lèi)和欺詐檢測(cè)等任務(wù)。

什么是機(jī)器學(xué)習(xí)?

基于規(guī)則的人工智能vs機(jī)器學(xué)習(xí)


來(lái)源:AnalyticsVidhya

機(jī)器學(xué)習(xí)是人工智能的一個(gè)分支,專(zhuān)注于使用數(shù)據(jù)和算法來(lái)模仿人類(lèi)的學(xué)習(xí)方式。機(jī)器學(xué)習(xí)算法經(jīng)過(guò)訓(xùn)練,可以根據(jù)過(guò)去的數(shù)據(jù)進(jìn)行預(yù)測(cè)和分類(lèi),并隨著時(shí)間的推移逐漸提高準(zhǔn)確性。

機(jī)器學(xué)習(xí)模型分為三個(gè)主要類(lèi)別:監(jiān)督學(xué)習(xí)、無(wú)監(jiān)督學(xué)習(xí)和半監(jiān)督學(xué)習(xí)。監(jiān)督學(xué)習(xí)包括使用標(biāo)記數(shù)據(jù)訓(xùn)練模型來(lái)進(jìn)行預(yù)測(cè)。無(wú)監(jiān)督學(xué)習(xí)包括在未標(biāo)記的數(shù)據(jù)中尋找模式,半監(jiān)督學(xué)習(xí)是兩者的結(jié)合。

機(jī)器學(xué)習(xí)算法通常使用加速解決方案開(kāi)發(fā)的框架創(chuàng)建,例如TensorFlow和PyTorch。機(jī)器學(xué)習(xí)有廣泛的用例,包括自然語(yǔ)言處理、圖像識(shí)別和欺詐檢測(cè)。

基于規(guī)則的人工智能和機(jī)器學(xué)習(xí)的主要區(qū)別是什么?

基于規(guī)則的人工智能和機(jī)器學(xué)習(xí)的主要區(qū)別在于,基于規(guī)則的系統(tǒng)依賴(lài)于人類(lèi)編碼的規(guī)則來(lái)做出決策,而機(jī)器學(xué)習(xí)系統(tǒng)則從過(guò)去的數(shù)據(jù)中學(xué)習(xí),并自行適應(yīng)新情況。基于規(guī)則的人工智能模型是確定性的,僅限于執(zhí)行編程的任務(wù),而機(jī)器學(xué)習(xí)模型可以用于廣泛的任務(wù)和功能。

基于規(guī)則的人工智能vs機(jī)器學(xué)習(xí)


何時(shí)使用基于規(guī)則的模型?

基于規(guī)則的模型最適合于問(wèn)題定義明確、輸入數(shù)據(jù)結(jié)構(gòu)化、規(guī)則清晰且易于理解的情況。對(duì)于可以分解為一系列邏輯步驟的問(wèn)題,它們非常有效,在這些步驟中,可以根據(jù)一組if-then規(guī)則預(yù)測(cè)結(jié)果?;谝?guī)則的系統(tǒng)的例子包括醫(yī)療和法律領(lǐng)域的專(zhuān)家系統(tǒng)、金融領(lǐng)域的欺詐檢測(cè)系統(tǒng)以及客戶(hù)服務(wù)領(lǐng)域的聊天機(jī)器人。

在這些情況下,規(guī)則通常是固定的,不會(huì)頻繁更改,系統(tǒng)操作的數(shù)據(jù)相對(duì)簡(jiǎn)單且結(jié)構(gòu)化。然而,基于規(guī)則的模型可能不適用于數(shù)據(jù)是非結(jié)構(gòu)化的或規(guī)則不斷變化的更復(fù)雜的問(wèn)題,因?yàn)樗鼈兛赡軣o(wú)法處理必要的靈活性和適應(yīng)性。

什么時(shí)候使用機(jī)器學(xué)習(xí)?

機(jī)器學(xué)習(xí)非常適合問(wèn)題復(fù)雜且輸入數(shù)據(jù)是非結(jié)構(gòu)化、有噪聲或可變的情況。它還非常適合用于管理數(shù)據(jù)的規(guī)則或模式未知,但可以通過(guò)分析發(fā)現(xiàn)的情況。機(jī)器學(xué)習(xí)模型可以處理大量數(shù)據(jù),并可以識(shí)別復(fù)雜的模式和關(guān)系,這些模式和關(guān)系對(duì)人類(lèi)分析師來(lái)說(shuō)可能不會(huì)立即顯現(xiàn)出來(lái)。

它們可用于廣泛的應(yīng)用,包括圖像和語(yǔ)音識(shí)別、自然語(yǔ)言處理、推薦系統(tǒng)和預(yù)測(cè)分析。當(dāng)問(wèn)題是動(dòng)態(tài)的,并且規(guī)則或模式隨時(shí)間變化時(shí),機(jī)器學(xué)習(xí)模型特別有用。然而,機(jī)器學(xué)習(xí)模型需要大量高質(zhì)量的訓(xùn)練數(shù)據(jù),并且可能需要大量的計(jì)算資源來(lái)進(jìn)行訓(xùn)練和推斷,這在某些情況下可能會(huì)成為采用的障礙。

結(jié)論

基于規(guī)則的人工智能vs機(jī)器學(xué)習(xí)


來(lái)源:Megaputer

盡管基于規(guī)則的人工智能和機(jī)器學(xué)習(xí)都有其優(yōu)缺點(diǎn),但兩者之間的選擇取決于具體的用例。基于規(guī)則的人工智能最適合于具有確定性且不需要適應(yīng)新情況的任務(wù),而機(jī)器學(xué)習(xí)最適合于需要適應(yīng)和從過(guò)去數(shù)據(jù)中學(xué)習(xí)的任務(wù)。隨著人工智能的不斷發(fā)展,基于規(guī)則的系統(tǒng)和機(jī)器學(xué)習(xí)都將在塑造其未來(lái)方面發(fā)揮重要作用。

責(zé)任編輯:姜華 來(lái)源: 千家網(wǎng)
相關(guān)推薦

2021-06-15 08:00:00

人工智能機(jī)器學(xué)習(xí)應(yīng)用

2022-08-18 09:42:02

人工智能機(jī)器學(xué)習(xí)

2015-10-10 09:32:24

機(jī)器學(xué)習(xí)人工智能

2024-10-31 08:00:00

云原生人工智能機(jī)器學(xué)習(xí)

2020-06-29 10:54:05

人工智能機(jī)器學(xué)習(xí)技術(shù)

2021-03-30 13:45:00

人工智能

2017-04-18 15:49:24

人工智能機(jī)器學(xué)習(xí)數(shù)據(jù)

2019-02-27 08:50:02

機(jī)器學(xué)習(xí)人工智能

2021-12-02 10:18:12

計(jì)算智能人工智能機(jī)器學(xué)習(xí)

2019-11-20 15:36:23

人工智能AI機(jī)器學(xué)習(xí)

2023-05-22 19:16:09

人工智能機(jī)器人

2022-10-24 15:43:47

人工智能語(yǔ)言模式機(jī)器

2021-01-27 11:56:45

AIops人工智能AI

2018-05-28 11:41:39

AR

2022-07-22 18:47:30

AIOmniverse

2020-05-15 11:20:16

網(wǎng)絡(luò)安全人工智能技術(shù)

2021-04-16 09:53:45

人工智能機(jī)器學(xué)習(xí)深度學(xué)習(xí)

2020-09-07 11:28:09

人工智能機(jī)器學(xué)習(xí)AI

2021-03-15 22:59:56

人工智能大數(shù)據(jù)技術(shù)

2022-06-17 11:13:33

物聯(lián)網(wǎng)人工智能邊緣計(jì)算
點(diǎn)贊
收藏

51CTO技術(shù)棧公眾號(hào)