自拍偷在线精品自拍偷,亚洲欧美中文日韩v在线观看不卡

“大大震驚”一位CTO:GPT-4V自動(dòng)駕駛五連測

人工智能 新聞
GPT-4V的到來,給AI又帶來了無限可能。近日,圖森中國CTO王乃巖在知乎發(fā)表的《GPT-4V在自動(dòng)駕駛中初探》引發(fā)了不少關(guān)注。在多項(xiàng)測試之后,他本人表示“大大震驚了我們”。那么具體效果如何?我們一同來看下。

本文經(jīng)AI新媒體量子位(公眾號(hào)ID:QbitAI)授權(quán)轉(zhuǎn)載,轉(zhuǎn)載請(qǐng)聯(lián)系出處。

萬眾矚目之下,今天GPT4終于推送了vision相關(guān)的功能。

今天下午抓緊和小伙伴一起測試了一下GPT對(duì)于圖像感知的能力,雖有預(yù)期,但是還是大大震驚了我們。

核心觀點(diǎn):

我認(rèn)為自動(dòng)駕駛中和語義相關(guān)的問題應(yīng)該大模型都已經(jīng)解決得很好了,但是大模型的可信性和空間感知能力方面仍然不盡如人意。

解決一些所謂和效率相關(guān)的corner case應(yīng)該是綽綽有余,但是想完全依賴大模型去獨(dú)立完成駕駛保證安全性仍然十分遙遠(yuǎn)。

Example1: 路上出現(xiàn)了一些未知障礙物

圖片

△GPT4的描述

準(zhǔn)確的部分:檢測到了3輛卡車,前車車牌號(hào)基本正確(有漢字就忽略吧),天氣和環(huán)境正確,在沒有提示的情況下準(zhǔn)確識(shí)別到了前方的未知障礙物。

不準(zhǔn)確的部分:第三輛卡車的位置左右不分,第二輛卡車頭頂?shù)奈淖窒共铝艘粋€(gè)(因?yàn)榉直媛什蛔??)?/p>

這還不夠,我們繼續(xù)給一點(diǎn)提示,去問這個(gè)物體是什么,是不是可以壓過去。

圖片

Impressive!類似的場景測試了多個(gè),對(duì)于未知障礙物的表現(xiàn)可以說非常驚人了。

Example2: 路面積水的理解

圖片

沒有提示能自動(dòng)識(shí)別到標(biāo)牌這個(gè)應(yīng)該是基操了,我們繼續(xù)給一些hint。

圖片

再次被震驚了。。。能自動(dòng)講出來卡車背后的霧氣,也主動(dòng)提到了水坑,但是再一次把方向說成了左側(cè)。。。感覺這里可能需要一些prompt engineering能更好的讓GPT輸出位置和方向。

Example3:有車輛掉頭時(shí)直接撞上了護(hù)欄

圖片

第一幀輸入進(jìn)去,因?yàn)闆]有時(shí)序信息,只是將右側(cè)的卡車當(dāng)做是??康牧恕S谑窃賮硪粠?/p>

圖片

已經(jīng)可以自動(dòng)講出,這輛撞破了護(hù)欄,懸停在公路邊緣,太棒了。。。但是反而看上去更容易的道路標(biāo)志出現(xiàn)了錯(cuò)誤。。。只能說,這很大模型了,它永遠(yuǎn)能震驚你也永遠(yuǎn)不知道什么時(shí)候能蠢哭你。。。再來一幀:

圖片

這次,直接講到了路面上的碎片,再次贊嘆。。。只不過有一次把路上的箭頭說錯(cuò)了。。??傮w而言,這個(gè)場景中需要特別關(guān)注的信息都有覆蓋,道路標(biāo)志這種問題,瑕不掩瑜吧。

Example4: 來一個(gè)搞笑的

圖片

只能說非常到位了,相比之下之前看上去無比困難的“有個(gè)人沖著你揮了揮手”這樣的case就像小兒科一樣,語義上的corner case可解。

Example5 來一個(gè)名場面。。。配送車誤入新修路

圖片

圖片

圖片

圖片

開始比較保守,并沒有直接猜測原因,給了多種猜測,這個(gè)也倒是符合alignment的目標(biāo)。

使用CoT之后問題發(fā)現(xiàn)問題是在于并不了解這輛車是個(gè)自動(dòng)駕駛車輛,故通過prompt給出這個(gè)信息能給出比較準(zhǔn)確的信息。

最后通過一堆prompt,能夠輸出新鋪設(shè)瀝青,不適合駕駛這樣的結(jié)論。最終結(jié)果來說還是OK,但是過程比較曲折,需要比較多的prompt engineering,要好好設(shè)計(jì)。

這個(gè)原因可能也是因?yàn)椴皇堑谝灰暯堑膱D片,只能通過第三視角去推測。所以這個(gè)例子并不十分精確。

總結(jié)

快速的一些嘗試已經(jīng)完全證明了GPT4V的強(qiáng)大與泛化性能,適當(dāng)?shù)膒rompt應(yīng)當(dāng)可以完全發(fā)揮出GPT4V的實(shí)力。

解決語義上的corner case應(yīng)該非常可期,但幻覺的問題會(huì)仍然困擾著一些和安全相關(guān)場景中的應(yīng)用。

非常exciting,個(gè)人認(rèn)為合理使用這樣的大模型可以大大加快L4乃至L5自動(dòng)駕駛的發(fā)展,然而是否LLM一定是要直接開車?尤其是端到端開車,仍然是一個(gè)值得商榷的問題。

責(zé)任編輯:張燕妮 來源: 量子位
相關(guān)推薦

2023-10-19 09:32:45

自動(dòng)駕駛技術(shù)

2023-11-20 13:53:00

數(shù)據(jù)訓(xùn)練

2024-02-06 09:00:00

GPT-4VLLaVA大型語言

2022-07-12 09:42:10

自動(dòng)駕駛技術(shù)

2023-10-08 16:13:47

自動(dòng)駕駛

2022-10-27 10:18:25

自動(dòng)駕駛

2022-03-21 18:21:34

自動(dòng)駕駛卡車智能

2024-01-30 09:39:36

自動(dòng)駕駛仿真

2018-03-23 09:24:55

自動(dòng)駕駛

2023-10-17 09:35:46

自動(dòng)駕駛技術(shù)

2021-11-18 09:50:35

自動(dòng)駕駛輔助駕駛人工智能

2021-04-22 14:30:20

自動(dòng)駕駛特斯拉智能

2023-07-24 09:41:08

自動(dòng)駕駛技術(shù)交通

2018-10-24 14:16:33

自動(dòng)駕駛道路測試牌照

2024-03-11 12:20:40

AI模型

2019-12-18 15:30:20

自動(dòng)駕駛交通委測試

2020-09-28 14:00:06

自動(dòng)駕駛AI網(wǎng)絡(luò)

2021-12-01 10:21:27

自動(dòng)駕駛技術(shù)人工智能

2019-09-19 14:10:12

人工智能物聯(lián)網(wǎng)自動(dòng)駕駛
點(diǎn)贊
收藏

51CTO技術(shù)棧公眾號(hào)