國(guó)內(nèi)AI頂會(huì)CPAL論文錄用結(jié)果放出!共計(jì)30篇Oral和60篇Spotlight
大家可能還記得,今年五月份公布的,將由國(guó)內(nèi)大佬馬毅和沈向洋牽頭辦的全新首屆AI學(xué)術(shù)會(huì)議CPAL。
這里我們?cè)俳榻B一下CPAL到底是個(gè)什么會(huì),以防有的讀者時(shí)間太久有遺忘——
CPAL(Conference on Parsimony and Learning)名為簡(jiǎn)約學(xué)術(shù)會(huì)議,每年舉辦一次。
第一屆CPAL將于2024年1月3日-6日,在香港大學(xué)數(shù)據(jù)科學(xué)研究院舉辦。
大會(huì)地址:https://cpal.cc
就像名稱明示的那樣,這個(gè)年度研究型學(xué)術(shù)會(huì)議注重的就是「簡(jiǎn)約」。
第一屆會(huì)議一共有兩個(gè)軌道(track),一個(gè)是論文集軌道(存檔)和一個(gè)「最新亮點(diǎn)」軌道(非存檔)。
圖片
具體的時(shí)間線我們也再?gòu)?fù)習(xí)一下:
圖片
可以看到,論文集軌道的論文提交截止日期已經(jīng)過去了三個(gè)多月,「最新亮點(diǎn)」軌道的論文提交截止也已經(jīng)過去了一個(gè)多月。
而在剛剛過去的十一月底,大會(huì)發(fā)布了兩個(gè)軌道的最終評(píng)審結(jié)果。
最終錄用結(jié)果
馬毅教授也在推特上發(fā)布了最終的結(jié)果:9位主講人,16位新星獎(jiǎng)獲獎(jiǎng)?wù)撸步邮?0篇論文(論文集軌道)和60篇「最新亮點(diǎn)」軌道中的論文。
馬教授的推特中也附上了每一部分的網(wǎng)址鏈接,點(diǎn)擊即可跳轉(zhuǎn)到相關(guān)頁(yè)面。
圖片
30篇Oral論文
1. Less is More – Towards parsimonious multi-task models using structured sparsity
作者:Richa Upadhyay, Ronald Phlypo, Rajkumar Saini, Marcus Liwicki
關(guān)鍵詞:Multi-task learning, structured sparsity, group sparsity, parameter pruning, semantic segmentation, depth estimation, surface normal estimation
TL;DR:我們提出了一種在多任務(wù)環(huán)境下利用動(dòng)態(tài)組稀疏性開發(fā)簡(jiǎn)約模型的方法。
圖片
2. Closed-Loop Transcription via Convolutional Sparse Coding
作者:Xili Dai, Ke Chen, Shengbang Tong, Jingyuan Zhang, Xingjian Gao, Mingyang Li, Druv Pai, Yuexiang Zhai, Xiaojun Yuan, Heung-Yeung Shum, Lionel Ni, Yi Ma
關(guān)鍵詞:Convolutional Sparse Coding, Inverse Problem, Closed-Loop Transcription
圖片
3. Leveraging Sparse Input and Sparse Models: Efficient Distributed Learning in Resource-Constrained Environments
作者:Emmanouil Kariotakis, Grigorios Tsagkatakis, Panagiotis Tsakalides, Anastasios Kyrillidis
關(guān)鍵詞:sparse neural network training, efficient training
TL;DR:設(shè)計(jì)和研究一個(gè)系統(tǒng),利用輸入層和中間層的稀疏性,由資源有限的工作者以分布式方式訓(xùn)練和運(yùn)行神經(jīng)網(wǎng)絡(luò)。
圖片
4. How to Prune Your Language Model: Recovering Accuracy on the "Sparsity May Cry" Benchmark
作者:Eldar Kurtic, Torsten Hoefler, Dan Alistarh
關(guān)鍵詞:pruning, deep learning, benchmarking
TL;DR:我們提供了一套語言模型的剪枝指南,并將其應(yīng)用于具有挑戰(zhàn)性的Sparsity May Cry基準(zhǔn)測(cè)試,以恢復(fù)準(zhǔn)確性。
圖片
5. Image Quality Assessment: Integrating Model-centric and Data-centric Approaches
作者:Peibei Cao, Dingquan Li, Kede Ma
關(guān)鍵詞:Learning-based IQA, model-centric IQA, data-centric IQA, sampling-worthiness.
圖片
6. Jaxpruner: A Concise Library for Sparsity Research
作者:Joo Hyung Lee, Wonpyo Park, Nicole Elyse Mitchell, Jonathan Pilault, Johan Samir Obando Ceron, Han-Byul Kim, Namhoon Lee, Elias Frantar, Yun Long, Amir Yazdanbakhsh, Woohyun Han, Shivani Agrawal, Suvinay Subramanian, Xin Wang, Sheng-Chun Kao, Xingyao Zhang, Trevor Gale, Aart J.C. Bik, Milen Ferev, Zhonglin Han, Hong-Seok Kim, Yann Dauphin, Gintare Karolina Dziugaite, Pablo Samuel Castro, Utku Evci
關(guān)鍵詞:jax, sparsity, pruning, quantization, sparse training, efficiency, library, software
TL;DR:本文介紹了 JaxPruner,這是一個(gè)用于機(jī)器學(xué)習(xí)研究的、基于JAX的開源剪枝和稀疏訓(xùn)練庫(kù)。
圖片
7. NeuroMixGDP: A Neural Collapse-Inspired Random Mixup for Private Data Release
作者:Donghao Li, Yang Cao, Yuan Yao
關(guān)鍵詞:Neural Collapse, Differential privacy, Private data publishing, Mixup
TL;DR:本文提出了一種新穎的隱私數(shù)據(jù)發(fā)布框架,稱為 NeuroMixGDP,它利用神經(jīng)坍縮特征的隨機(jī)混合來實(shí)現(xiàn)最先進(jìn)的隱私-效用權(quán)衡。
圖片
8. Algorithm Design for Online Meta-Learning with Task Boundary Detection
作者:Daouda Sow, Sen Lin, Yingbin Liang, Junshan Zhang
關(guān)鍵詞:online meta-learning, task boundary detection, domain shift, dynamic regret, out of distribution detection
TL;DR:我們提出了一種新的算法,用于在不知道任務(wù)邊界的非穩(wěn)態(tài)環(huán)境中進(jìn)行與任務(wù)無關(guān)的在線元學(xué)習(xí)。
圖片
9. Unsupervised Learning of Structured Representation via Closed-Loop Transcription
作者:Shengbang Tong, Xili Dai, Yubei Chen, Mingyang Li, ZENGYI LI, Brent Yi, Yann LeCun, Yi Ma
關(guān)鍵詞:Unsupervised/Self-supervised Learning, Closed-Loop Transcription
圖片
10. Exploring Minimally Sufficient Representation in Active Learning through Label-Irrelevant Patch Augmentation
作者:Zhiyu Xue, Yinlong Dai, Qi Lei
關(guān)鍵詞:Active Learning, Data Augmentation, Minimally Sufficient Representation
圖片
11. Probing Biological and Artificial Neural Networks with Task-dependent Neural Manifolds
作者:Michael Kuoch, Chi-Ning Chou, Nikhil Parthasarathy, Joel Dapello, James J. DiCarlo, Haim Sompolinsky, SueYeon Chung
關(guān)鍵詞:Computational Neuroscience, Neural Manifolds, Neural Geometry, Representational Geometry, Biologically inspired vision models, Neuro-AI
TL;DR:利用流形容量理論和流形對(duì)齊分析,研究和比較獼猴視覺皮層的表征和不同目標(biāo)訓(xùn)練的DNN表征。
圖片
12. An Adaptive Tangent Feature Perspective of Neural Networks
作者:Daniel LeJeune, Sina Alemohammad
關(guān)鍵詞:adaptive, kernel learning, tangent kernel, neural networks, low rank
TL;DR:具有神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)的自適應(yīng)特征模型,對(duì)權(quán)重矩陣施加近似低秩正則化。
圖片
13. Balance is Essence: Accelerating Sparse Training via Adaptive Gradient Correction
作者:Bowen Lei, Dongkuan Xu, Ruqi Zhang, Shuren He, Bani Mallick
關(guān)鍵詞:Sparse Training, Space-time Co-efficiency, Acceleration, Stability, Gradient Correction
圖片
14. Deep Leakage from Model in Federated Learning
作者:Zihao Zhao, Mengen Luo, Wenbo Ding
關(guān)鍵詞:Federated learning, distributed learning, privacy leakage
圖片
15. Cross-Quality Few-Shot Transfer for Alloy Yield Strength Prediction: A New Materials Science Benchmark and A Sparsity-Oriented Optimization Framework
作者:Xuxi Chen, Tianlong Chen, Everardo Yeriel Olivares, Kate Elder, Scott McCall, Aurelien Perron, Joseph McKeown, Bhavya Kailkhura, Zhangyang Wang, Brian Gallagher
關(guān)鍵詞:AI4Science, sparsity, bi-level optimization
圖片
16. HRBP: Hardware-friendly Regrouping towards Block-based Pruning for Sparse CNN Training
作者:Haoyu Ma, Chengming Zhang, lizhi xiang, Xiaolong Ma, Geng Yuan, Wenkai Zhang, Shiwei Liu, Tianlong Chen, Dingwen Tao, Yanzhi Wang, Zhangyang Wang, Xiaohui Xie
關(guān)鍵詞:efficient training, sparse training, fine-grained structured sparsity, regrouping algorithm
TL;DR:本文提出了一種新穎的細(xì)粒度結(jié)構(gòu)剪枝算法,它能在前向和后向傳遞中加速卷積神經(jīng)網(wǎng)絡(luò)的稀疏訓(xùn)練。
圖片
17. Piecewise-Linear Manifolds for Deep Metric Learning
作者:Shubhang Bhatnagar, Narendra Ahuja
關(guān)鍵詞:Deep metric learning, Unsupervised representation learning
圖片
18. Sparse Activations with Correlated Weights in Cortex-Inspired Neural Networks
作者:Chanwoo Chun, Daniel Lee
關(guān)鍵詞:Correlated weights, Biological neural network, Cortex, Neural network gaussian process, Sparse neural network, Bayesian neural network, Generalization theory, Kernel ridge regression, Deep neural network, Random neural network
圖片
19. Deep Self-expressive Learning
作者:Chen Zhao, Chun-Guang Li, Wei He, Chong You
關(guān)鍵詞:Self-Expressive Model; Subspace Clustering; Manifold Clustering
TL;DR:我們提出了一種「白盒」深度學(xué)習(xí)模型,它建立在自表達(dá)模型的基礎(chǔ)上,具有可解釋性、魯棒性和可擴(kuò)展性,適用于流形學(xué)習(xí)和聚類。
圖片
20. Investigating the Catastrophic Forgetting in Multimodal Large Language Model Fine-Tuning
作者:Yuexiang Zhai, Shengbang Tong, Xiao Li, Mu Cai, Qing Qu, Yong Jae Lee, Yi Ma
關(guān)鍵詞:Multimodal LLM, Supervised Fine-Tuning, Catastrophic Forgetting
TL;DR:監(jiān)督微調(diào)導(dǎo)致多模態(tài)大型語言模型的災(zāi)難性遺忘。
圖片
21. Domain Generalization via Nuclear Norm Regularization
作者:Zhenmei Shi, Yifei Ming, Ying Fan, Frederic Sala, Yingyu Liang
關(guān)鍵詞:Domain Generalization, Nuclear Norm, Deep Learning
TL;DR:我們提出了一種簡(jiǎn)單有效的正則化方法,該方法基于所學(xué)特征的核范數(shù),用于領(lǐng)域泛化。
圖片
22. FIXED: Frustratingly Easy Domain Generalization with Mixup
作者:Wang Lu, Jindong Wang, Han Yu, Lei Huang, Xiang Zhang, Yiqiang Chen, Xing Xie
關(guān)鍵詞:Domain generalization, Data Augmentation, Out-of-distribution generalization
圖片
23. HARD: Hyperplane ARrangement Descent
作者:Tianjiao Ding, Liangzu Peng, Rene Vidal
關(guān)鍵詞:hyperplane clustering, subspace clustering, generalized principal component analysis
圖片
24. Decoding Micromotion in Low-dimensional Latent Spaces from StyleGAN
作者:Qiucheng Wu, Yifan Jiang, Junru Wu, Kai Wang, Eric Zhang, Humphrey Shi, Zhangyang Wang, Shiyu Chang
關(guān)鍵詞:generative model, low-rank decomposition
TL;DR:我們的研究表明,在StyleGAN的潛在空間中,我們可以持續(xù)找到低維潛在子空間,在這些子空間中,可以為許多有意義的變化(表示為「微情緒」)重建通用的編輯方向。
圖片
25. Continual Learning with Dynamic Sparse Training: Exploring Algorithms for Effective Model Updates
作者:Murat Onur Yildirim, Elif Ceren Gok, Ghada Sokar, Decebal Constantin Mocanu, Joaquin Vanschoren
關(guān)鍵詞:continual learning, sparse neural networks, dynamic sparse training
TL;DR:我們研究了連續(xù)學(xué)習(xí)中的動(dòng)態(tài)稀疏訓(xùn)練。
圖片
26. Emergence of Segmentation with Minimalistic White-Box Transformers
作者:Yaodong Yu, Tianzhe Chu, Shengbang Tong, Ziyang Wu, Druv Pai, Sam Buchanan, Yi Ma
關(guān)鍵詞:white-box transformer, emergence of segmentation properties
TL;DR:白盒transformer只需通過極簡(jiǎn)的監(jiān)督訓(xùn)練Recipe,就能在網(wǎng)絡(luò)的自我注意力圖譜中產(chǎn)生細(xì)分特性。
圖片
27. Efficiently Disentangle Causal Representations
作者:Yuanpeng Li, Joel Hestness, Mohamed Elhoseiny, Liang Zhao, Kenneth Church
關(guān)鍵詞:causal representation learning
28. Sparse Fréchet sufficient dimension reduction via nonconvex optimization
作者:Jiaying Weng, Chenlu Ke, Pei Wang
關(guān)鍵詞:Fréchet regression; minimax concave penalty; multitask regression; sufficient dimension reduction; sufficient variable selection.
29. WS-iFSD: Weakly Supervised Incremental Few-shot Object Detection Without Forgetting
作者:Xinyu Gong, Li Yin, Juan-Manuel Perez-Rua, Zhangyang Wang, Zhicheng Yan
關(guān)鍵詞:few-shot object detection
TL;DR:我們的iFSD框架采用元學(xué)習(xí)和弱監(jiān)督類別增強(qiáng)技術(shù)來檢測(cè)基礎(chǔ)類別和新類別中的物體,在多個(gè)基準(zhǔn)測(cè)試中的表現(xiàn)明顯優(yōu)于最先進(jìn)的方法。
圖片
30. PC-X: Profound Clustering via Slow Exemplars
作者:Yuangang Pan, Yinghua Yao, Ivor Tsang
關(guān)鍵詞:Deep clustering, interpretable machine learning, Optimization
TL;DR:在本文中,我們?cè)O(shè)計(jì)了一個(gè)新的端到端框架,名為「通過慢速示例進(jìn)行深度聚類」(PC-X),該框架具有內(nèi)在可解釋性,可普遍適用于各種類型的大規(guī)模數(shù)據(jù)集。
圖片
同時(shí)還有60篇「最新亮點(diǎn)」軌道中的論文,大家可以前往官網(wǎng)自行瀏覽:https://cpal.cc/spotlight_track/