自拍偷在线精品自拍偷,亚洲欧美中文日韩v在线观看不卡

Pytorch的編譯新特性TorchDynamo的工作原理和使用示例

人工智能
在深度學習中,優(yōu)化模型性能至關重要,特別是對于需要快速執(zhí)行和實時推斷的應用。而PyTorch在平衡動態(tài)圖執(zhí)行與高性能方面常常面臨挑戰(zhàn)。

在深度學習中,優(yōu)化模型性能至關重要,特別是對于需要快速執(zhí)行和實時推斷的應用。而PyTorch在平衡動態(tài)圖執(zhí)行與高性能方面常常面臨挑戰(zhàn)。傳統(tǒng)的PyTorch優(yōu)化技術在處理動態(tài)計算圖時效果有限,導致訓練時間延長和模型性能不佳。TorchDynamo是一種為PyTorch設計的即時(JIT)編譯器,通過在運行時攔截Python代碼、優(yōu)化它,并編譯成高效的機器代碼來解決這一問題。本文通過使用合成數據集展示了TorchDynamo的實際應用,包括特征工程、超參數調整、交叉驗證和評估指標。

TorchDynamo簡介

TorchDynamo 是一個由 PyTorch 團隊開發(fā)的編譯器前端,它旨在自動優(yōu)化 PyTorch 程序以提高運行效率。TorchDynamo 的工作原理是在運行時動態(tài)分析和轉換 PyTorch 的代碼,然后將其轉發(fā)給各種后端編譯器(如 TorchScript、TVM、Triton 等),從而實現性能的提升。

特別是在需要實時執(zhí)行的應用中,如自動駕駛或金融預測等,深度學習模型要求快速執(zhí)行。傳統(tǒng)的優(yōu)化技術經常需要在處理Python的動態(tài)特性時進行修訂,這正是TorchDynamo的強項所在。它能夠即時捕獲計算圖,針對特定的工作負載和硬件應用優(yōu)化,從而減少延遲并提高吞吐量。

TorchDynamo的另外一個突出特點是其易于集成。重寫整個代碼庫以集成新工具可能是一項艱巨的任務。但是TorchDynamo僅需要對現有的PyTorch工作流進行最小的更改。它的簡單性和強大的優(yōu)化能力使它成為經驗豐富的研究人員和行業(yè)專業(yè)人士的有力選擇。

將 TorchDynamo 集成到現有的 PyTorch 程序中相對簡單,只需要在程序中導入 TorchDynamo 并使用它來包裝模型的執(zhí)行部分。

 import torch
 import torchdynamo
 
 # 定義模型和優(yōu)化器
 model = MyModel()
 optimizer = torch.optim.Adam(model.parameters())
 
 # 使用 TorchDynamo 優(yōu)化模型的訓練過程
 def training_step(input, target):
     optimizer.zero_grad()
     output = model(input)
     loss = loss_fn(output, target)
     loss.backward()
     optimizer.step()
     return loss
 
 # 使用 torchdynamo.optimize 包裝訓練步驟
 optimized_training_step = torchdynamo.optimize(training_step)
 
 # 訓練循環(huán)
 for input, target in data_loader:
     loss = optimized_training_step(input, target)

TorchDynamo的工作原理

TorchDynamo通過追蹤PyTorch代碼的執(zhí)行,動態(tài)地捕獲計算圖。這個過程涉及理解代碼的依賴關系和流程,使其能夠識別優(yōu)化的機會。應用優(yōu)化

一旦捕獲了計算圖,TorchDynamo就會應用各種優(yōu)化技術。這些技術包括操作符融合,它將多個操作合并為一個單一操作以減少開銷,以及改進內存管理,最小化數據移動并有效地重用資源。

優(yōu)化計算圖口,TorchDynamo將其編譯成高效的機器碼。這種編譯可以針對不同的后端,如TorchScript或NVFuser,以確保代碼在可用的硬件上以最佳方式運行。

在最后的執(zhí)行階段。與最初的Python代碼相比,上面的優(yōu)化可以顯著提高性能。JIT編譯確保在運行時期間應用這些優(yōu)化,使執(zhí)行適應不同的工作負載和輸入數據。

使用示例

下面我們演示了使用一個合成數據集的TorchDynamo示例,包括特征工程,超參數調優(yōu),交叉驗證,預測和結果解釋。

 import torch
 import torch.nn as nn
 import torch.optim as optim
 import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 from sklearn.model_selection import train_test_split, KFold
 from sklearn.metrics import mean_squared_error, r2_score
 from sklearn.preprocessing import StandardScaler
 from torch import _dynamo as torchdynamo
 from typing import List
 
 # Generate synthetic dataset
 np.random.seed(42)
 torch.manual_seed(42)
 
 # Feature engineering: create synthetic data
 n_samples = 1000
 n_features = 10
 X = np.random.rand(n_samples, n_features)
 y = X @ np.random.rand(n_features) + np.random.rand(n_samples) * 0.1  # Linear relation with noise
 
 # Split data into train and test sets
 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
 
 # Standardize the features
 scaler = StandardScaler()
 X_train = scaler.fit_transform(X_train)
 X_test = scaler.transform(X_test)
 
 # Convert to PyTorch tensors
 X_train = torch.tensor(X_train, dtype=torch.float32)
 y_train = torch.tensor(y_train, dtype=torch.float32).view(-1, 1)
 X_test = torch.tensor(X_test, dtype=torch.float32)
 y_test = torch.tensor(y_test, dtype=torch.float32).view(-1, 1)
 
 # Define the model
 class SimpleNN(nn.Module):
     def __init__(self, input_dim):
         super(SimpleNN, self).__init__()
         self.fc1 = nn.Linear(input_dim, 64)
         self.fc2 = nn.Linear(64, 32)
         self.fc3 = nn.Linear(32, 1)
     
     def forward(self, x):
         x = torch.relu(self.fc1(x))
         x = torch.relu(self.fc2(x))
         x = self.fc3(x)
         return x
 
 # Hyperparameters
 input_dim = X_train.shape[1]
 learning_rate = 0.001
 n_epochs = 100
 
 # Initialize the model, loss function, and optimizer
 model = SimpleNN(input_dim)
 criterion = nn.MSELoss()
 optimizer = optim.Adam(model.parameters(), lr=learning_rate)
 
 # Define custom compiler
 def my_compiler(gm: torch.fx.GraphModule, example_inputs: List[torch.Tensor]):
     print("my_compiler() called with FX graph:")
     gm.graph.print_tabular()
     return gm.forward  # return a python callable
 
 @torchdynamo.optimize(my_compiler)
 def train_and_evaluate(model, criterion, optimizer, X_train, y_train, X_test, y_test, n_epochs):
     # Training loop with K-Fold Cross-Validation
     kf = KFold(n_splits=5, shuffle=True, random_state=42)
     train_losses_per_epoch = np.zeros(n_epochs)
     val_losses_per_epoch = np.zeros(n_epochs)
     kf_count = 0
 
     for train_idx, val_idx in kf.split(X_train):
         X_kf_train, X_kf_val = X_train[train_idx], X_train[val_idx]
         y_kf_train, y_kf_val = y_train[train_idx], y_train[val_idx]
 
         for epoch in range(n_epochs):
             model.train()
             optimizer.zero_grad()
             y_pred_train = model(X_kf_train)
             train_loss = criterion(y_pred_train, y_kf_train)
             train_loss.backward()
             optimizer.step()
 
             model.eval()
             y_pred_val = model(X_kf_val)
             val_loss = criterion(y_pred_val, y_kf_val)
 
             train_losses_per_epoch[epoch] += train_loss.item()
             val_losses_per_epoch[epoch] += val_loss.item()
         
         kf_count += 1
 
     # Average losses over K-Folds
     train_losses_per_epoch /= kf_count
     val_losses_per_epoch /= kf_count
 
     # Evaluate on test data
     model.eval()
     y_pred_test = model(X_test)
     test_loss = criterion(y_pred_test, y_test).item()
     test_r2 = r2_score(y_test.detach().numpy(), y_pred_test.detach().numpy())
 
     return train_losses_per_epoch, val_losses_per_epoch, test_loss, test_r2
 
 # Run training and evaluation with TorchDynamo optimization
 train_losses, val_losses, test_loss, test_r2 = train_and_evaluate(model, criterion, optimizer, X_train, y_train, X_test, y_test, n_epochs)
 
 # Print metrics
 print(f"Test MSE: {test_loss:.4f}")
 print(f"Test R^2: {test_r2:.4f}")
 
 # Plot results
 epochs = list(range(1, n_epochs + 1))
 plt.plot(epochs, train_losses, label='Train Loss')
 plt.plot(epochs, val_losses, label='Validation Loss')
 plt.xlabel('Epochs')
 plt.ylabel('Loss')
 plt.legend()
 plt.title('Training and Validation Loss')
 plt.show()

我們使用PyTorch定義了一個具有兩個隱藏層的簡單神經網絡。模型使用K-Fold交叉驗證來確保穩(wěn)健的性能。TorchDynamo用于優(yōu)化訓練循環(huán)。在單獨的測試集上對模型進行評估,并計算MSE和R2等指標。

最后得到的訓練和驗證損失如下

我們在代碼中my_compiler打印了TorchDynamo相關的內容,我們來看看里面到底是什么:

my_compiler() called with FX graph:
 opcode         name                   target                               args                                               kwargs
 ------------- ---------------------- ----------------------------------- ------------------------------------------------- --------
 call_function train_losses_per_epoch <Wrapped function <original zeros>> (100,)                                             {}
 call_function val_losses_per_epoch   <Wrapped function <original zeros>> (100,)                                             {}
 output         output                 output                               ((train_losses_per_epoch, val_losses_per_epoch),) {}
 my_compiler() called with FX graph:
 opcode         name           target                                                   args             kwargs
 ------------- ------------- ------------------------------------------------------- ---------------- --------
 placeholder   l_x_           L_x_                                                     ()               {}
 call_module   l__self___fc1 L__self___fc1                                           (l_x_,)           {}
 call_function x             <built-in method relu of type object at 0x792eaaa81760> (l__self___fc1,) {}
 call_module   l__self___fc2 L__self___fc2                                           (x,)             {}
 call_function x_1           <built-in method relu of type object at 0x792eaaa81760> (l__self___fc2,) {}
 call_module   x_2           L__self___fc3                                           (x_1,)           {}
 output         output         output                                                   ((x_2,),)         {}
 my_compiler() called with FX graph:
 opcode         name                     target                                                   args                                       kwargs
 ------------- ----------------------- -------------------------------------------------------- ------------------------------------------ --------------------------------
 placeholder   grad                     L_self_param_groups_0_params_0_grad                       ()                                         {}
 placeholder   grad_1                   L_self_param_groups_0_params_1_grad                       ()                                         {}
 placeholder   grad_2                   L_self_param_groups_0_params_2_grad                       ()                                         {}
 placeholder   grad_3                   L_self_param_groups_0_params_3_grad                       ()                                         {}
 placeholder   grad_4                   L_self_param_groups_0_params_4_grad                       ()                                         {}
 placeholder   grad_5                   L_self_param_groups_0_params_5_grad                       ()                                         {}
 get_attr       param                   self___param_groups_0__params___0                         ()                                         {}
 get_attr       param_1                 self___param_groups_0__params___1                         ()                                         {}
 get_attr       param_2                 self___param_groups_0__params___2                         ()                                         {}
 get_attr       param_3                 self___param_groups_0__params___3                         ()                                         {}
 get_attr       param_4                 self___param_groups_0__params___4                         ()                                         {}
 get_attr       param_5                 self___param_groups_0__params___5                         ()                                         {}
 get_attr       exp_avg                 self___state_list_L__self___state_keys____0___exp_avg     ()                                         {}
 get_attr       exp_avg_1               self___state_list_L__self___state_keys____1___exp_avg     ()                                         {}
 get_attr       exp_avg_2               self___state_list_L__self___state_keys____2___exp_avg     ()                                         {}
 get_attr       exp_avg_3               self___state_list_L__self___state_keys____3___exp_avg     ()                                         {}
 get_attr       exp_avg_4               self___state_list_L__self___state_keys____4___exp_avg     ()                                         {}
 get_attr       exp_avg_5               self___state_list_L__self___state_keys____5___exp_avg     ()                                         {}
 get_attr       exp_avg_sq               self___state_list_L__self___state_keys____0___exp_avg_sq ()                                         {}
 get_attr       exp_avg_sq_1             self___state_list_L__self___state_keys____1___exp_avg_sq ()                                         {}
 get_attr       exp_avg_sq_2             self___state_list_L__self___state_keys____2___exp_avg_sq ()                                         {}
 get_attr       exp_avg_sq_3             self___state_list_L__self___state_keys____3___exp_avg_sq ()                                         {}
 get_attr       exp_avg_sq_4             self___state_list_L__self___state_keys____4___exp_avg_sq ()                                         {}
 get_attr       exp_avg_sq_5             self___state_list_L__self___state_keys____5___exp_avg_sq ()                                         {}
 get_attr       step_t                   self___state_list_L__self___state_keys____0___step       ()                                         {}
 get_attr       step_t_2                 self___state_list_L__self___state_keys____1___step       ()                                         {}
 get_attr       step_t_4                 self___state_list_L__self___state_keys____2___step       ()                                         {}
 get_attr       step_t_6                 self___state_list_L__self___state_keys____3___step       ()                                         {}
 get_attr       step_t_8                 self___state_list_L__self___state_keys____4___step       ()                                         {}
 get_attr       step_t_10               self___state_list_L__self___state_keys____5___step       ()                                         {}
 call_function step                     <built-in function iadd>                                 (step_t, 1)                                 {}
 call_method   lerp_                   lerp_                                                     (exp_avg, grad, 0.09999999999999998)       {}
 call_method   mul_                     mul_                                                     (exp_avg_sq, 0.999)                         {}
 call_method   conj                     conj                                                     (grad,)                                     {}
 call_method   addcmul_                 addcmul_                                                 (mul_, grad, conj)                         {'value': 0.0010000000000000009}
 call_function pow_1                   <built-in function pow>                                   (0.9, step)                                 {}
 call_function bias_correction1         <built-in function sub>                                   (1, pow_1)                                 {}
 call_function pow_2                   <built-in function pow>                                   (0.999, step)                               {}
 call_function bias_correction2         <built-in function sub>                                   (1, pow_2)                                 {}
 call_function step_size               <built-in function truediv>                               (0.001, bias_correction1)                   {}
 call_method   step_size_neg           neg                                                       (step_size,)                               {}
 call_method   bias_correction2_sqrt   sqrt                                                     (bias_correction2,)                         {}
 call_method   sqrt_1                   sqrt                                                     (exp_avg_sq,)                               {}
 call_function mul                     <built-in function mul>                                   (bias_correction2_sqrt, step_size_neg)     {}
 call_function truediv_1               <built-in function truediv>                               (sqrt_1, mul)                               {}
 call_function truediv_2               <built-in function truediv>                               (1e-08, step_size_neg)                     {}
 call_method   denom                   add_                                                     (truediv_1, truediv_2)                     {}
 call_method   addcdiv_                 addcdiv_                                                 (param, exp_avg, denom)                     {}
 call_function step_1                   <built-in function iadd>                                 (step_t_2, 1)                               {}
 call_method   lerp__1                 lerp_                                                     (exp_avg_1, grad_1, 0.09999999999999998)   {}
 call_method   mul__1                   mul_                                                     (exp_avg_sq_1, 0.999)                       {}
 call_method   conj_1                   conj                                                     (grad_1,)                                   {}
 call_method   addcmul__1               addcmul_                                                 (mul__1, grad_1, conj_1)                   {'value': 0.0010000000000000009}
 call_function pow_3                   <built-in function pow>                                   (0.9, step_1)                               {}
 call_function bias_correction1_1       <built-in function sub>                                   (1, pow_3)                                 {}
 call_function pow_4                   <built-in function pow>                                   (0.999, step_1)                             {}
 call_function bias_correction2_1       <built-in function sub>                                   (1, pow_4)                                 {}
 call_function step_size_1             <built-in function truediv>                               (0.001, bias_correction1_1)                 {}
 call_method   step_size_neg_1         neg                                                       (step_size_1,)                             {}
 call_method   bias_correction2_sqrt_1 sqrt                                                     (bias_correction2_1,)                       {}
 call_method   sqrt_3                   sqrt                                                     (exp_avg_sq_1,)                             {}
 call_function mul_1                   <built-in function mul>                                   (bias_correction2_sqrt_1, step_size_neg_1) {}
 call_function truediv_4               <built-in function truediv>                               (sqrt_3, mul_1)                             {}
 call_function truediv_5               <built-in function truediv>                               (1e-08, step_size_neg_1)                   {}
 call_method   denom_1                 add_                                                     (truediv_4, truediv_5)                     {}
 call_method   addcdiv__1               addcdiv_                                                 (param_1, exp_avg_1, denom_1)               {}
 call_function step_2                   <built-in function iadd>                                 (step_t_4, 1)                               {}
 call_method   lerp__2                 lerp_                                                     (exp_avg_2, grad_2, 0.09999999999999998)   {}
 call_method   mul__2                   mul_                                                     (exp_avg_sq_2, 0.999)                       {}
 call_method   conj_2                   conj                                                     (grad_2,)                                   {}
 call_method   addcmul__2               addcmul_                                                 (mul__2, grad_2, conj_2)                   {'value': 0.0010000000000000009}
 call_function pow_5                   <built-in function pow>                                   (0.9, step_2)                               {}
 call_function bias_correction1_2       <built-in function sub>                                   (1, pow_5)                                 {}
 call_function pow_6                   <built-in function pow>                                   (0.999, step_2)                             {}
 call_function bias_correction2_2       <built-in function sub>                                   (1, pow_6)                                 {}
 call_function step_size_2             <built-in function truediv>                               (0.001, bias_correction1_2)                 {}
 call_method   step_size_neg_2         neg                                                       (step_size_2,)                             {}
 call_method   bias_correction2_sqrt_2 sqrt                                                     (bias_correction2_2,)                       {}
 call_method   sqrt_5                   sqrt                                                     (exp_avg_sq_2,)                             {}
 call_function mul_2                   <built-in function mul>                                   (bias_correction2_sqrt_2, step_size_neg_2) {}
 call_function truediv_7               <built-in function truediv>                               (sqrt_5, mul_2)                             {}
 call_function truediv_8               <built-in function truediv>                               (1e-08, step_size_neg_2)                   {}
 call_method   denom_2                 add_                                                     (truediv_7, truediv_8)                     {}
 call_method   addcdiv__2               addcdiv_                                                 (param_2, exp_avg_2, denom_2)               {}
 call_function step_3                   <built-in function iadd>                                 (step_t_6, 1)                               {}
 call_method   lerp__3                 lerp_                                                     (exp_avg_3, grad_3, 0.09999999999999998)   {}
 call_method   mul__3                   mul_                                                     (exp_avg_sq_3, 0.999)                       {}
 call_method   conj_3                   conj                                                     (grad_3,)                                   {}
 call_method   addcmul__3               addcmul_                                                 (mul__3, grad_3, conj_3)                   {'value': 0.0010000000000000009}
 call_function pow_7                   <built-in function pow>                                   (0.9, step_3)                               {}
 call_function bias_correction1_3       <built-in function sub>                                   (1, pow_7)                                 {}
 call_function pow_8                   <built-in function pow>                                   (0.999, step_3)                             {}
 call_function bias_correction2_3       <built-in function sub>                                   (1, pow_8)                                 {}
 call_function step_size_3             <built-in function truediv>                               (0.001, bias_correction1_3)                 {}
 call_method   step_size_neg_3         neg                                                       (step_size_3,)                             {}
 call_method   bias_correction2_sqrt_3 sqrt                                                     (bias_correction2_3,)                       {}
 call_method   sqrt_7                   sqrt                                                     (exp_avg_sq_3,)                             {}
 call_function mul_3                   <built-in function mul>                                   (bias_correction2_sqrt_3, step_size_neg_3) {}
 call_function truediv_10               <built-in function truediv>                               (sqrt_7, mul_3)                             {}
 call_function truediv_11               <built-in function truediv>                               (1e-08, step_size_neg_3)                   {}
 call_method   denom_3                 add_                                                     (truediv_10, truediv_11)                   {}
 call_method   addcdiv__3               addcdiv_                                                 (param_3, exp_avg_3, denom_3)               {}
 call_function step_4                   <built-in function iadd>                                 (step_t_8, 1)                               {}
 call_method   lerp__4                 lerp_                                                     (exp_avg_4, grad_4, 0.09999999999999998)   {}
 call_method   mul__4                   mul_                                                     (exp_avg_sq_4, 0.999)                       {}
 call_method   conj_4                   conj                                                     (grad_4,)                                   {}
 call_method   addcmul__4               addcmul_                                                 (mul__4, grad_4, conj_4)                   {'value': 0.0010000000000000009}
 call_function pow_9                   <built-in function pow>                                   (0.9, step_4)                               {}
 call_function bias_correction1_4       <built-in function sub>                                   (1, pow_9)                                 {}
 call_function pow_10                   <built-in function pow>                                   (0.999, step_4)                             {}
 call_function bias_correction2_4       <built-in function sub>                                   (1, pow_10)                                 {}
 call_function step_size_4             <built-in function truediv>                               (0.001, bias_correction1_4)                 {}
 call_method   step_size_neg_4         neg                                                       (step_size_4,)                             {}
 call_method   bias_correction2_sqrt_4 sqrt                                                     (bias_correction2_4,)                       {}
 call_method   sqrt_9                   sqrt                                                     (exp_avg_sq_4,)                             {}
 call_function mul_4                   <built-in function mul>                                   (bias_correction2_sqrt_4, step_size_neg_4) {}
 call_function truediv_13               <built-in function truediv>                               (sqrt_9, mul_4)                             {}
 call_function truediv_14               <built-in function truediv>                               (1e-08, step_size_neg_4)                   {}
 call_method   denom_4                 add_                                                     (truediv_13, truediv_14)                   {}
 call_method   addcdiv__4               addcdiv_                                                 (param_4, exp_avg_4, denom_4)               {}
 call_function step_5                   <built-in function iadd>                                 (step_t_10, 1)                             {}
 call_method   lerp__5                 lerp_                                                     (exp_avg_5, grad_5, 0.09999999999999998)   {}
 call_method   mul__5                   mul_                                                     (exp_avg_sq_5, 0.999)                       {}
 call_method   conj_5                   conj                                                     (grad_5,)                                   {}
 call_method   addcmul__5               addcmul_                                                 (mul__5, grad_5, conj_5)                   {'value': 0.0010000000000000009}
 call_function pow_11                   <built-in function pow>                                   (0.9, step_5)                               {}
 call_function bias_correction1_5       <built-in function sub>                                   (1, pow_11)                                 {}
 call_function pow_12                   <built-in function pow>                                   (0.999, step_5)                             {}
 call_function bias_correction2_5       <built-in function sub>                                   (1, pow_12)                                 {}
 call_function step_size_5             <built-in function truediv>                               (0.001, bias_correction1_5)                 {}
 call_method   step_size_neg_5         neg                                                       (step_size_5,)                             {}
 call_method   bias_correction2_sqrt_5 sqrt                                                     (bias_correction2_5,)                       {}
 call_method   sqrt_11                 sqrt                                                     (exp_avg_sq_5,)                             {}
 call_function mul_5                   <built-in function mul>                                   (bias_correction2_sqrt_5, step_size_neg_5) {}
 call_function truediv_16               <built-in function truediv>                               (sqrt_11, mul_5)                           {}
 call_function truediv_17               <built-in function truediv>                               (1e-08, step_size_neg_5)                   {}
 call_method   denom_5                 add_                                                     (truediv_16, truediv_17)                   {}
 call_method   addcdiv__5               addcdiv_                                                 (param_5, exp_avg_5, denom_5)               {}
 output         output                   output                                                   ((),)                                       {}
 my_compiler() called with FX graph:
 opcode         name           target                                                   args             kwargs
 ------------- ------------- ------------------------------------------------------- ---------------- --------
 placeholder   s0             s0                                                       ()               {}
 placeholder   l_x_           L_x_                                                     ()               {}
 call_module   l__self___fc1 L__self___fc1                                           (l_x_,)           {}
 call_function x             <built-in method relu of type object at 0x792eaaa81760> (l__self___fc1,) {}
 call_module   l__self___fc2 L__self___fc2                                           (x,)             {}
 call_function x_1           <built-in method relu of type object at 0x792eaaa81760> (l__self___fc2,) {}
 call_module   x_2           L__self___fc3                                           (x_1,)           {}
 output         output         output                                                   ((x_2,),)         {}

FX圖的輸出表明了模型的結構和操作是如何組織的:

輸入0和L_x_是表示輸入數據的占位符。

模型通過全連接層L__self___fc1 , L__self___fc2,L__self___fc3傳遞輸入,這是神經網絡的三層。

在前兩層之后應用ReLU激活函數。

在第三層完全連接后產生最終輸出。

總結

對于研究人員和工程師來說,訓練大型和復雜的模型可能很耗時。TorchDynamo通過優(yōu)化計算圖和加速執(zhí)行來減少這種訓練時間,允許在更短的時間內進行更多的迭代和實驗。在需要實時處理的應用程序中,如視頻流或交互式人工智能系統(tǒng),延遲是至關重要的。TorchDynamo在運行時優(yōu)化和編譯代碼的能力確保了這些系統(tǒng)可以平穩(wěn)運行并快速響應新數據。

TorchDynamo在支持多個后端和硬件架構方面的靈活性使其非常適合在各種環(huán)境中部署。無論是在高性能gpu或邊緣設備上運行,TorchDynamo適應提供最佳性能。

責任編輯:華軒 來源: DeepHub IMBA
相關推薦

2020-06-19 07:59:35

人工智能

2024-11-27 08:15:50

2022-12-19 15:16:46

機器學習模型

2020-11-20 07:54:22

Java 特性語句

2009-07-08 09:35:53

Java ServleServlet 3.0

2013-05-02 09:14:19

Java 8Java 8的新特性

2010-01-12 16:40:23

miniGUI編譯安裝

2010-08-19 15:06:27

動態(tài)路由協議

2017-04-11 08:36:09

iOS編譯應用

2011-07-01 11:16:14

Struts

2024-09-25 16:31:02

2023-05-04 07:48:29

Debian 12Linux

2022-06-06 09:56:38

編程語言Python

2012-05-18 14:36:50

Fedora 17桌面環(huán)境

2009-01-16 10:01:57

MySQL復制特性測試

2021-02-19 08:20:42

JWT網絡原理

2025-04-16 10:03:40

開發(fā)Spring應用程序

2009-09-25 11:44:00

ibmdwDB2

2009-05-26 16:12:43

Visual StudC#命名

2009-06-18 15:40:07

Spring Batc
點贊
收藏

51CTO技術棧公眾號