自拍偷在线精品自拍偷,亚洲欧美中文日韩v在线观看不卡

面試官逼問 “ 如何設(shè)計永不宕機(jī)的 K8s 集群 ” ?這套生產(chǎn)級方案讓他當(dāng)場發(fā) Offer!

云計算 云原生
工具鏈推薦: 網(wǎng)絡(luò)診斷:Cilium Network Observability,存儲分析:Rook Dashboard,成本監(jiān)控:Kubecost + Grafana。策略管理:OPA Gatekeeper + Kyverno,通過以上深度擴(kuò)展,你的Kubernetes集群將具備企業(yè)級抗風(fēng)險能力,從容應(yīng)對千萬級并發(fā)與區(qū)域級故障。?

引言

我們今天的內(nèi)容極其廣泛,我不知道你是否可以吸收的了(就是含金量非常高),盡力吧!

try your best, bro。

我們最后有面試群。

開始

一、控制平面高可用設(shè)計

1. 多Master節(jié)點部署

? 跨可用區(qū)部署優(yōu)化:

a.AWS示例:使用topology.kubernetes.io/zone標(biāo)簽強(qiáng)制etcd節(jié)點分布在3個AZ。

b.性能調(diào)優(yōu)參數(shù):

# etcd配置(/etc/etcd/etcd.conf)
ETCD_HEARTBEAT_INTERVAL="500ms"  
ETCD_ELECTION_TIMEOUT="2500ms"  
ETCD_MAX_REQUEST_BYTES="157286400"  # 提高大請求吞吐量

? API Server負(fù)載均衡實戰(zhàn):

# Nginx配置示例(健康檢查與熔斷)
upstream kube-apiserver {
  server 10.0.1.10:6443 max_fails=3 fail_timeout=10s;
  server 10.0.2.10:6443 max_fails=3 fail_timeout=10s;
  check interval=5000 rise=2 fall=3 timeout=3000 type=http;
  check_http_send "GET /readyz HTTP/1.0\r\n\r\n";
  check_http_expect_alive http_2xx http_3xx;
}

2. etcd集群深度調(diào)優(yōu)

etcd的寫入性能直接影響集群穩(wěn)定性,需根據(jù)業(yè)務(wù)負(fù)載計算所需節(jié)點數(shù):

? 公式:

所需etcd節(jié)點數(shù) = (預(yù)期寫入QPS × 平均請求大小) / (單節(jié)點最大吞吐量) + 冗余系數(shù)

? 示例:

a.單節(jié)點吞吐量:1.5MB/s(SSD磁盤)

b.業(yè)務(wù)負(fù)載:2000 QPS,每個請求10KB → 2000×10KB=20MB/s

c.計算結(jié)果:20/1.5≈13節(jié)點 → 實際部署5節(jié)點(3工作節(jié)點+2冗余)

? 調(diào)優(yōu)參數(shù):

# /etc/etcd/etcd.conf  
# 增加網(wǎng)絡(luò)和磁盤吞吐  
ETCD_HEARTBEAT_INTERVAL="500ms"  
ETCD_ELECTION_TIMEOUT="2500ms"  
ETCD_SNAPSHOT_COUNT="10000"  # 提高快照頻率

? 監(jiān)控與告警規(guī)則:

# 主節(jié)點切換頻繁告警
increase(etcd_server_leader_changes_seen_total[1h]) > 3  
# 寫入延遲過高告警  
histogram_quantile(0.99, rate(etcd_disk_wal_fsync_duration_seconds_bucket[5m])) > 1s

? 災(zāi)難恢復(fù)命令:

# 從快照恢復(fù)etcd  
ETCDCTL_API=3 etcdctl snapshot restore snapshot.db --data-dir /var/lib/etcd-new

二、工作節(jié)點高可用設(shè)計

3. Cluster Autoscaler高級策略

? 分優(yōu)先級擴(kuò)容:為關(guān)鍵服務(wù)預(yù)留專用節(jié)點池(如GPU節(jié)點)。

# 節(jié)點組配置(AWS EKS)
- name: gpu-nodegroup  
  instanceTypes: ["p3.2xlarge"]  
  labels: { node.kubernetes.io/accelerator: "nvidia" }  
  taints: { dedicated=gpu:NoSchedule }  
  scalingConfig: { minSize: 1, maxSize: 5 }

? HPA自定義指標(biāo)示例:

# 基于Prometheus的QPS擴(kuò)縮容  
metrics:  
- type: Pods  
  pods:  
    metric:  
      name: http_requests_per_second  
    target:  
      type: AverageValue  
      averageValue: 500

4. Pod調(diào)度深度策略

? 拓?fù)浞植技s束:確保Pod均勻分布至不同硬件拓?fù)洹?/p>

spec:  
  topologySpreadConstraints:  
  - maxSkew: 1  
    topologyKey: topology.kubernetes.io/zone  
    whenUnsatisfiable: DoNotSchedule

5. 基于污點的精細(xì)化調(diào)度

? 場景:為AI訓(xùn)練任務(wù)預(yù)留GPU節(jié)點,并防止普通Pod調(diào)度到GPU節(jié)點:

# 節(jié)點打標(biāo)簽  
kubectl label nodes gpu-node1 accelerator=nvidia  
# 設(shè)置污點  
kubectl taint nodes gpu-node1 dedicated=ai:NoSchedule  

# Pod配置容忍度 + 資源請求  
spec:  
  tolerations:  
    - key: "dedicated"  
      operator: "Equal"  
      value: "ai"  
      effect: "NoSchedule"  
  containers:  
    - resources:  
        limits:  
          nvidia.com/gpu: 1

三、網(wǎng)絡(luò)高可用設(shè)計

6. Cilium eBPF網(wǎng)絡(luò)加速

? 優(yōu)勢:減少50%的CPU開銷,支持基于eBPF的細(xì)粒度安全策略。

? 部署步驟:

helm install cilium cilium/cilium --namespace kube-system \  
  --set kubeProxyReplacement=strict \  
  --set k8sServiceHost=API_SERVER_IP \  
  --set k8sServicePort=6443

? 驗證:

cilium status  
# 應(yīng)顯示 "KubeProxyReplacement: Strict"

? 網(wǎng)絡(luò)策略性能對比:

插件

策略數(shù)量

吞吐量下降

Calico

1000

25%

Cilium

1000

8%

7. Ingress多活架構(gòu)

? 全局負(fù)載均衡配置(AWS示例):

resource "aws_globalaccelerator_endpoint_group" "ingress" {  
  listener_arn = aws_globalaccelerator_listener.ingress.arn  
  endpoint_configuration {  
    endpoint_id = aws_lb.ingress.arn  
    weight      = 100  
  }  
}

四、存儲高可用設(shè)計

8. Rook/Ceph生產(chǎn)級配置

? 存儲集群部署:

apiVersion: ceph.rook.io/v1  
kind: CephCluster  
metadata:  
  name: rook-ceph  
spec:  
  dataDirHostPath: /var/lib/rook  
  mon:  
    count: 3  
    allowMultiplePerNode: false  
  storage:  
    useAllNodes: false  
    nodes:  
    - name: "storage-node-1"  
      devices:  
      - name: "nvme0n1"

9. Velero跨區(qū)域備份實戰(zhàn)

? 定時備份與復(fù)制:

velero schedule create daily-backup --schedule="0 3 * * *" \  
  --include-namespaces=production \  
  --ttl 168h  
velero backup-location create secondary --provider aws \  
  --bucket velero-backup-dr \  
  --config region=eu-west-1

10. 災(zāi)難恢復(fù):Velero跨區(qū)域備份策略

velero install \  
  --provider aws \  
  --plugins velero/velero-plugin-for-aws:v1.5.0 \  
  --bucket velero-backups \  
  --backup-location-config region=us-west-2 \  
  --snapshot-location-config region=us-west-2 \  
  --use-volume-snapshots=false \  
  --secret-file ./credentials-velero  

# 添加跨區(qū)域復(fù)制規(guī)則  
velero backup-location create secondary \  
  --provider aws \  
  --bucket velero-backups \  
  --config region=us-east-1

? 場景:將AWS us-west-2的備份自動復(fù)制到us-east-1:

五、監(jiān)控與日志

11. Thanos長期存儲優(yōu)化

? 公式:計算Thanos的存儲分塊策略

存儲周期 = 原始數(shù)據(jù)保留時間(如2周) + 壓縮塊保留時間(如1年)  
存儲成本 = 原始數(shù)據(jù)量 × 壓縮比(約3:1) × 云存儲單價

? 分層存儲配置:

# thanos-store.yaml  
args:  
  - --retention.resolution-raw=14d  
  - --retention.resolution-5m=180d  
  - --objstore.config-file=/etc/thanos/s3.yml

? 多集群查詢:

thanos query \  
  --http-address 0.0.0.0:10902 \  
  --store=thanos-store-01:10901 \  
  --store=thanos-store-02:10901

12. EFK日志過濾規(guī)則:

# Fluentd配置(提取Kubernetes元數(shù)據(jù))
<filter kubernetes.**>  
  @type parser  
  key_name log  
  reserve_data true  
  <parse>  
    @type json  
  </parse>  
</filter>

六、安全與合規(guī)

13. OPA Gatekeeper策略庫

? 禁止特權(quán)容器:

apiVersion: constraints.gatekeeper.sh/v1beta1  
kind: K8sPSPPrivilegedContainer  
spec:  
  match:  
    kinds: [{ apiGroups: [""], kinds: ["Pod"] }]  
  parameters:  
    privileged: false

14. 運(yùn)行時安全檢測:

# Falco檢測特權(quán)容器啟動  
falco -r /etc/falco/falco_rules.yaml \  
  -o json_output=true \  
  -o "webserver.enabled=true"

15. 基于OPA的鏡像掃描準(zhǔn)入控制

# image_scan.rego  
package kubernetes.admission  

deny[msg] {  
  input.request.kind.kind == "Pod"  
  image := input.request.object.spec.containers[_].image  
  vuln_score := data.vulnerabilities[image].maxScore  
  vuln_score >= 7.0  
  msg := sprintf("鏡像 %v 存在高危漏洞(CVSS評分 %.1f)", [image, vuln_score])  
}

? 策略:禁止使用存在高危漏洞的鏡像:

七、災(zāi)難恢復(fù)與備份

16. 多集群聯(lián)邦流量切分:

apiVersion: types.kubefed.io/v1beta1  
kind: FederatedService  
metadata:  
  name: frontend  
spec:  
  placement:  
    clusters:  
      - name: cluster-us  
      - name: cluster-eu  
  trafficSplit:  
    - cluster: cluster-us  
      weight: 70  
    - cluster: cluster-eu  
      weight: 30

17. 混沌工程全鏈路測試:

apiVersion: chaos-mesh.org/v1alpha1  
kind: NetworkChaos  
metadata:  
  name: simulate-az-failure  
spec:  
  action: partition  
  mode: all  
  selector:  
    namespaces: [production]  
    labelSelectors:  
      "app": "frontend"  
  direction: both  
  duration: "10m"

18. 混沌工程:模擬Master節(jié)點故障

? 使用Chaos Mesh測試控制平面韌性:

apiVersion: chaos-mesh.org/v1alpha1  
kind: PodChaos  
metadata:  
  name: kill-master  
spec:  
  action: pod-kill  
  mode: one  
  selector:  
    namespaces: [kube-system]  
    labelSelectors:  
      "component": "kube-apiserver"  
  scheduler:  
    cron: "@every 10m"  
  duration: "5m"

觀測指標(biāo):

? API Server恢復(fù)時間(應(yīng)<1分鐘)

? 工作節(jié)點Pod是否正常調(diào)度

八:成本控制

19. Kubecost多集群預(yù)算分配

? 配置示例:

apiVersion: kubecost.com/v1alpha1  
kind: Budget  
metadata:  
  name: team-budget  
spec:  
  target:  
    namespace: team-a  
  amount:  
    value: 5000  
    currency: USD  
  period: monthly  
  notifications:  
    - threshold: 80%  
      message: "團(tuán)隊A的云資源消耗已達(dá)預(yù)算80%"

九:自動化

20. Argo Rollouts金絲雀發(fā)布

? 分階段灰度策略:

apiVersion: argoproj.io/v1alpha1  
kind: Rollout  
spec:  
  strategy:  
    canary:  
      steps:  
        - setWeight: 10%  
        - pause: { duration: 5m }  # 監(jiān)控業(yè)務(wù)指標(biāo)  
        - setWeight: 50%  
        - pause: { duration: 30m } # 觀察日志和性能  
        - setWeight: 100%  
  analysis:  
    templates:  
      - templateName: success-rate  
    args:  
      - name: service-name  
        value: my-service

? 自動回滾條件:當(dāng)請求錯誤率 > 5%時終止發(fā)布。

十:總結(jié)

關(guān)鍵性能指標(biāo):

? 控制平面:API Server P99延遲 < 500ms

? 數(shù)據(jù)平面:Pod啟動時間 < 5s(冷啟動)

? 網(wǎng)絡(luò):跨AZ延遲 < 10ms

十一、實戰(zhàn)案例:某電商平臺優(yōu)化成果

指標(biāo)

優(yōu)化前

優(yōu)化后

提升幅度

API Server可用性

99.2%

99.99%

0.79%

節(jié)點故障恢復(fù)時間

15分鐘

2分鐘

86.6%

集群擴(kuò)容速度

10節(jié)點/分鐘

50節(jié)點/分鐘

400%

十二、工具鏈推薦

? 網(wǎng)絡(luò)診斷:Cilium Network Observability

? 存儲分析:Rook Dashboard

? 成本監(jiān)控:Kubecost + Grafana

? 策略管理:OPA Gatekeeper + Kyverno

通過以上深度擴(kuò)展,你的Kubernetes集群將具備企業(yè)級抗風(fēng)險能力,從容應(yīng)對千萬級并發(fā)與區(qū)域級故障。

責(zé)任編輯:武曉燕 來源: 云原生運(yùn)維圈
相關(guān)推薦

2025-03-10 08:00:05

2024-01-05 11:49:30

K8S監(jiān)控告警

2024-04-03 00:00:00

Redis集群代碼

2025-03-05 08:04:31

2023-03-01 08:44:42

OpenStackDockerK8S

2015-08-13 10:29:12

面試面試官

2020-11-12 18:20:28

接口數(shù)據(jù)分布式

2021-08-04 20:36:12

MySQL結(jié)構(gòu)體系

2025-03-21 07:59:04

2020-06-22 08:16:16

哈希hashCodeequals

2023-03-05 21:50:46

K8s集群容量

2023-09-03 23:58:23

k8s集群容量

2025-04-07 00:00:00

云原生架構(gòu)Kubernetes

2021-08-02 17:21:08

設(shè)計模式訂閱

2021-12-13 09:02:13

localStorag面試前端

2024-09-29 16:17:02

2020-03-06 15:36:01

Redis內(nèi)存宕機(jī)

2021-04-01 08:12:20

zookeeper集群源碼

2010-08-12 16:28:35

面試官

2021-11-04 07:49:58

K8SStatefulSetMySQL
點贊
收藏

51CTO技術(shù)棧公眾號