自拍偷在线精品自拍偷,亚洲欧美中文日韩v在线观看不卡

用ChatGPT逆向工程壓縮后的Js代碼,表現(xiàn)驚艷 精華

發(fā)布于 2024-8-30 12:03
瀏覽
0收藏

互聯(lián)網(wǎng)世界里,每個開發(fā)者都有這么一個瞬間:你遇到一個炫酷的小組件,想知道它是怎么實現(xiàn)的,但源碼卻是最小化的,看起來全是亂碼。這時,你會怎么做?今天,F(xiàn)rank Fiegel要和大家分享一個非常時髦和實用的方法——用ChatGPT來逆向工程被壓縮的JavaScript代碼。

發(fā)現(xiàn)炫酷組件

在某個閑暇的夜晚,我無意間瀏覽到了一個網(wǎng)站,發(fā)現(xiàn)了一個非常有趣的組件(https://reactive.network/hackathon)。它展示了一個以ASCII藝術形式呈現(xiàn)的動態(tài)動畫,著實是令人眼前一亮。

用ChatGPT逆向工程壓縮后的Js代碼,表現(xiàn)驚艷-AI.x社區(qū)

動態(tài)效果

出于好奇,我決定深入研究它的實現(xiàn)。但當我打開源碼時,發(fā)現(xiàn)這些代碼被壓縮和最小化了,看起來十分費解。

const { floor: ra, abs: KE, min: QE } = Math,
    O5 = ["reactive.network REACTIVE.NETWORK", "$@B%8&WM#*oahkbdpqwmZO0QLCJUYXzcvunxrjft/|()1{}[]?-_+~<>i!lI;:,^`'. .:a–‘a(chǎn)–’a–“a–?"],
    G7 = Date.now() % 3 ? O5[1] : O5[0],
    V5 = G7.length,
    JE = { fps: 60 };
function eT(e, t, n, r) {
    const i = t.time * 8e-5,
        s = QE(t.cols, t.rows),
        o = t.metrics.aspect * 0.2,
        l = { x: ((4 * (e.x - t.cols / 6.25)) / s) * o, y: (5 * (e.y - t.rows / 4)) / s },
        u = ra(KE(YE(l) - i) * V5 + (ra(e.x / 1) % 2) * 2) % V5;
    return G7[u];
}
const tT = () => {
    const e = j.useRef(null),
        [t, n] = j.useState({ height: null, width: null });
    return (
        j.useEffect(() => {
            function r() {
                n({ height: window.innerHeight, width: window.innerWidth });
            }
            if (typeof window < "u") return n({ height: window.innerHeight, width: window.innerWidth }), window.addEventListener("resize", r), () => window.removeEventListener("resize", r);
        }, []),
        j.useEffect(() => {
            const r = e.current;
            if (!r) return;
            const i = 12,
                s = ra(t.width / i) * 1.6,
                o = ra(t.height / i),
                l = { aspect: s / o },
                u = setInterval(() => {
                    let c = "";
                    for (let d = 0; d < o; d++) {
                        for (let f = 0; f < s; f++) c += eT({ x: f, y: d }, { cols: s, rows: o, metrics: l, time: Date.now() });
                        c += `
`;
                    }
                    r.textContent = c;
                }, 1e3 / JE.fps);
            return () => clearInterval(u);
        }, [t]),
        a.jsx("div", { style: { position: "absolute", top: 0, left: 0, width: "100%", height: "100%" }, children: a.jsx("div", { ref: e, style: { width: "100%", height: "100%", whiteSpace: "pre", overflow: "hidden" } }) })
    );
};
function nT(e) {
    return Math.cos(e.x * e.x - e.y * e.y);
}
const { floor: ia, abs: rT, min: iT } = Math,
    D5 = ["reactive.network REACTIVE.NETWORK", "$@B%8&WM#*oahkbdpqwmZO0QLCJUYXzcvunxrjft/|()1{}[]?-_+~<>i!lI;:,^`'. .:a–‘a(chǎn)–’a–“a–?"],
    X7 = Date.now() % 3 ? D5[1] : D5[0],
    F5 = X7.length,
    sT = { fps: 60 };
function oT(e, t, n, r) {
    const i = t.time * 8e-5,
        s = iT(t.cols, t.rows),
        o = t.metrics.aspect * 0.2,
        l = { x: ((4 * (e.x - t.cols / 6.25)) / s) * o, y: (5 * (e.y - t.rows / 4)) / s },
        u = ia(rT(nT(l) - i) * F5 + (ia(e.x / 1) % 2) * 2) % F5;
    return X7[u];
}
const aT = () => {
    const e = j.useRef(null),
        [t, n] = j.useState({ height: null, width: null });
    return (
        j.useEffect(() => {
            function r() {
                n({ height: window.innerHeight, width: window.innerWidth });
            }
            if (typeof window < "u") return n({ height: window.innerHeight, width: window.innerWidth }), window.addEventListener("resize", r), () => window.removeEventListener("resize", r);
        }, []),
        j.useEffect(() => {
            const r = e.current;
            if (!r) return;
            const i = 12,
                s = ia(t.width / i) * 1.6,
                o = ia(t.height / i),
                l = { aspect: s / o },
                u = setInterval(() => {
                    let c = "";
                    for (let d = 0; d < o; d++) {
                        for (let f = 0; f < s; f++) c += oT({ x: f, y: d }, { cols: s, rows: o, metrics: l, time: Date.now() });
                        c += `
`;
                    }
                    r.textContent = c;
                }, 1e3 / sT.fps);
            return () => clearInterval(u);
        }, [t]),
        a.jsx("div", { style: { position: "absolute", top: 0, left: 0, width: "100%", height: "100%" }, children: a.jsx("div", { ref: e, style: { width: "100%", height: "100%", whiteSpace: "pre", overflow: "hidden" } }) })
    );
},

使用ChatGPT逆向工程

通常情況下,我會耐心地閱讀這些亂成一團的代碼,嘗試理解其實現(xiàn)原理,或者找一個.map文件來還原原本的代碼。然而,這次我想到了一個新奇的辦法:為什么不讓ChatGPT幫我解讀這些代碼呢?

于是,我將以上代碼復制并詢問ChatGPT:“能解釋一下這段代碼嗎?”以下是它的回復:

概覽

代碼定義了幾個函數(shù)和組件,特別是用于React應用的。它主要處理生成一些動態(tài)文本內(nèi)容,可能是ASCII藝術或者使用預定義字符集的某些視覺效果。此外,它還包括事件處理、性能計時和HTML內(nèi)容轉換的實用工具函數(shù)。

核心組件和函數(shù)

  1. 字符集選擇:

const { floor: ra, abs: KE, min: QE } = Math;
const O5 = ["reactive.network REACTIVE.NETWORK", "$@B%8&WM#*oahkbdpqwmZO0QLCJUYXzcvunxrjft/|()1{}[]?-_+~<>i!lI;:,^`'. .:a–‘a(chǎn)–’a–“a–?"];
const G7 = Date.now() % 3 ? O5[1] : O5[0];
const V5 = G7.length;

這部分代碼引入了一些常用的數(shù)學函數(shù),并定義了兩個字符集。基于當前的時間戳(Date.now() % 3),選擇其中一個字符集使用,并計算其長度。

  1. 動態(tài)字符選擇函數(shù):

function eT(e, t, n, r) {
 const i = t.time * 8e-5;
 const s = QE(t.cols, t.rows);
 const o = t.metrics.aspect * 0.2;
 const l = { x: ((4 * (e.x - t.cols / 6.25)) / s) * o, y: (5 * (e.y - t.rows / 4)) / s };
 const u = ra(KE(YE(l) - i) * V5 + (ra(e.x / 1) % 2) * 2) % V5;
 return G7[u];
 }

eT函數(shù)根據(jù)輸入位置和當前時間生成字符。調(diào)整位置后,基于時間和位置選擇一個字符。

  1. React組件用于顯示動態(tài)內(nèi)容:

const tT = () => {
    const e = j.useRef(null);
    const [t, n] = j.useState({ height: null, width: null });
    j.useEffect(() => {
        function r() {
            n({ height: window.innerHeight, width: window.innerWidth });
        }
        if (typeof window < "u") {
            n({ height: window.innerHeight, width: window.innerWidth });
            window.addEventListener("resize", r);
            return () => window.removeEventListener("resize", r);
        }
    }, []);

    j.useEffect(() => {
        const r = e.current;
        if (!r) return;
        const i = 12;
        const s = ra(t.width / i) * 1.6;
        const o = ra(t.height / i);
        const l = { aspect: s / o };
        const u = setInterval(() => {
            let c = "";
            for (let d = 0; d < o; d++) {
                for (let f = 0; f < s; f++) c += eT({ x: f, y: d },                     { cols: s, rows: o, metrics: l, time: Date.now()         });
                c += `
                    `;
            }
            r.textContent = c;
        }, 1e3 / JE.fps);
        return () => clearInterval(u);
    }, [t]);

        return a.jsx("div", { style: { position: "absolute", top: 0,       lef  t: 0, width: "100%", height: "100%" }, children: a.jsx("d      iv", { ref: e, style: { width: "100%", height: "100%", whiteSpa      ce: "pre", overflow: "hidden" } }) });
      };

這是一個React組件,設置一個間隔以定期更新div?元素的內(nèi)容。它根據(jù)窗口大小計算列和行數(shù),然后用動態(tài)生成的字符填充div。

將代碼轉換為TypeScript并變得可讀

我進一步要求ChatGPT將其中的代碼轉換為TypeScript,并使其更加可讀。以下是它的回復:

import React, { useEffect, useRef, useState } from 'react';

const selectedCharacterSet =
  "$@B%8&WM#*oahkbdpqwmZO0QLCJUYXzcvunxrjft/|()1{}[]?-_+~<>i!lI;:,^`'. .:a–‘a(chǎn)–’a–“a–?";
const characterSetLength = selectedCharacterSet.length;

const calculateCharacter = (
  x: number,
  y: number,
  cols: number,
  rows: number,
  aspect: number,
  time: number,
): string => {
  const timeFactor = time * 0.000_08;
  const size = Math.min(cols, rows);
  const aspectRatio = aspect * 0.2;
  const position = {
    x: ((4 * (x - cols / 6.25)) / size) * aspectRatio,
    y: (5 * (y - rows / 4)) / size,
  };

  const index =
    Math.floor(
      Math.abs(
        Math.cos(position.x * position.x - position.y * position.y) -
          timeFactor,
      ) *
        characterSetLength +
        (Math.floor(x) % 2) * 2,
    ) % characterSetLength;
  return selectedCharacterSet[index];
};

type Size = {
  height: null | number;
  width: null | number;
};

const AsciiArtGenerator: React.FC = () => {
  const textRef = useRef<HTMLDivElement>(null);
  const [size, setSize] = useState<Size>({ height: null, width: null });

  useEffect(() => {
    const handleResize = () => {
      setSize({ height: window.innerHeight, width: window.innerWidth });
    };

    // Initial size setting
    handleResize();

    window.addEventListener('resize', handleResize);
    return () => {
      window.removeEventListener('resize', handleResize);
    };
  }, []);

  useEffect(() => {
    const element = textRef.current;
    if (!element || !size.width || !size.height) return undefined;

    const cols = Math.floor(size.width / 12) * 1.6;
    const rows = Math.floor(size.height / 12);
    const aspectRatio = cols / rows;

    const intervalId = setInterval(() => {
      let content = '';

      for (let y = 0; y < rows; y++) {
        for (let x = 0; x < cols; x++) {
          content += calculateCharacter(
            x,
            y,
            cols,
            rows,
            aspectRatio,
            Date.now(),
          );
        }

        content += '\n';
      }

      element.textContent = content;
    }, 1_000 / 60); // 60 fps

    return () => {
      clearInterval(intervalId);
    };
  }, [size]);

  return (
    <div
      ref={textRef}
      style={{
        height: '100%',
        overflow: 'hidden',
        whiteSpace: 'pre',
        width: '100%',
      }}
    />
  );
};

export default () => {
  return <AsciiArtGenerator />;
};

當我將ChatGPT生成的代碼與原始組件進行比較時,我發(fā)現(xiàn)輸出幾乎是完全一致的。雖然最初我認為LLM在復制代碼時忽略了一些實現(xiàn)細節(jié),但進一步調(diào)查發(fā)現(xiàn),問題很可能是字符編碼錯誤。還原正確字符后,輸出是完全一致的。

筆者嘗試使用當紅辣子雞Cursor來復現(xiàn)這一過程,看看是否能夠完成這一工作。以下是cursor生成的代碼,大家看chatGPT和Cursor Claude 3.5誰更勝一籌:

import React, { useRef, useState, useEffect } from 'react';

const ASCII_CHARS = "$@B%8&WM#*oahkbdpqwmZO0QLCJUYXzcvunxrjft/|()1{}[]?-_+~<>i!lI;:,^`'. .:■■□□";
const TEXT = "reactive.network REACTIVE.NETWORK";
const CHAR_SET = Math.random() < 0.67 ? ASCII_CHARS : TEXT;
const CHAR_LENGTH = CHAR_SET.length;
const FPS = 60;

function calculateChar(x, y, cols, rows, aspect, time) {
const scale = Math.min(cols, rows);
const adjustedX = ((4 * (x - cols / 6.25)) / scale) * aspect * 0.2;
const adjustedY = (5 * (y - rows / 4)) / scale;
const value = Math.cos(adjustedX * adjustedX - adjustedY * adjustedY);
const index = Math.floor(Math.abs(value - time * 8e-5) * CHAR_LENGTH + (Math.floor(x) % 2) * 2) % CHAR_LENGTH;
return CHAR_SET[index];
}

const AsciiAnimation = () => {
const containerRef = useRef(null);
const [dimensions, setDimensions] = useState({ height: null, width: null });

useEffect(() => {
  const updateDimensions = () => {
    setDimensions({ height: window.innerHeight, width: window.innerWidth });
  };

  if (typeof window !== 'undefined') {
    updateDimensions();
    window.addEventListener('resize', updateDimensions);
    return () => window.removeEventListener('resize', updateDimensions);
  }
}, []);

useEffect(() => {
  const container = containerRef.current;
  if (!container) return;

  const cellSize = 12;
  const cols = Math.floor(dimensions.width / cellSize) * 1.6;
  const rows = Math.floor(dimensions.height / cellSize);
  const aspect = cols / rows;

  const animationInterval = setInterval(() => {
    let frame = '';
    for (let y = 0; y < rows; y++) {
      for (let x = 0; x < cols; x++) {
        frame += calculateChar(x, y, cols, rows, aspect, Date.now());
      }
      frame += '\n';
    }
    container.textContent = frame;
  }, 1000 / FPS);

  return () => clearInterval(animationInterval);
}, [dimensions]);

return (
  <div style={{ position: 'absolute', top: 0, left: 0, width: '100%', height: '100%' }}>
    <div ref={containerRef} style={{ width: '100%', height: '100%', whiteSpace: 'pre', overflow: 'hidden' }} />
  </div>
);
};

export default AsciiAnimation;

最后,不得不承認,LLM正變得越來越強大,它不僅能夠進行復雜的代碼解釋,還能幫你逆向實現(xiàn)一些非常實用的功能??梢灶A見未來還會有更多用途被挖掘出來,大家拭目以待。

參考:https://glama.ai/blog/2024-08-29-reverse-engineering-minified-code-using-openai

本文轉載自 ??AI工程化??,作者: ully

收藏
回復
舉報
回復
相關推薦