自拍偷在线精品自拍偷,亚洲欧美中文日韩v在线观看不卡

迅雷創(chuàng)始人程浩:人工智能創(chuàng)業(yè)的6大核心問題

人工智能
首先如果今天大家選擇創(chuàng)業(yè),我建議更應(yīng)該關(guān)注人工智能,而非互聯(lián)網(wǎng)。為什么這么講?

[[205875]]

首先如果今天大家選擇創(chuàng)業(yè),我建議更應(yīng)該關(guān)注人工智能,而非互聯(lián)網(wǎng)。為什么這么講?

1. 互聯(lián)網(wǎng)的流量紅利已經(jīng)消失;

以 PC 來說,全球 PC 出貨量連續(xù) 5 年下滑。大家知道國內(nèi)最后出現(xiàn)的一個 PC 互聯(lián)網(wǎng)獨角獸是誰嗎?是知乎,大概是 2011 年初推出,這么多年過去,再也沒有 PC 互聯(lián)網(wǎng)的獨角獸出現(xiàn)。做個類比,我們知道 2015 年移動互聯(lián)網(wǎng)的滲透率和競爭程度和 2011 年的 PC 互聯(lián)網(wǎng)類似,以此類推,2015 年以后再做移動 APP,也很難出獨角獸了。

畢竟中國連續(xù)兩年手機(jī)出貨量都在 5 億多臺,增長放緩,代表無線流量基本已走平,你多賣一臺,我就少賣一臺,是存量競爭。今天創(chuàng)業(yè)者再做一個純互聯(lián)網(wǎng)的 APP,投資人問的第一個問題就是你怎么獲客。因為現(xiàn)階段流量格局已定,首屏就那幾個 APP。

2. 互聯(lián)網(wǎng)+的機(jī)會同樣有限;

主要在于互聯(lián)網(wǎng)最大的價值,是解決信息不對稱和連接。所以對于電商特別有價值。淘寶用皇冠、鉆石等信用體系解決了信息不對稱,同時又把全國有這么多買家和賣家連接在一起。這個是互聯(lián)網(wǎng)的價值。

但很多行業(yè)信息和連接并不是痛點。拿醫(yī)療舉例,中國三甲醫(yī)院的大夫就那么多,你把全國 13 億人民都和這些大夫連接上了也沒用,因為一個醫(yī)生一天還是只能看那么多病人?;ヂ?lián)網(wǎng)并沒有提高醫(yī)生看診的效率。在諸如餐飲、醫(yī)療這些傳統(tǒng)領(lǐng)域,互聯(lián)網(wǎng)的幫助是很有限的。

也包括滴滴打車,互聯(lián)網(wǎng)解決了打車難的問題,但是沒解決打車價格的問題。事實上,補(bǔ)貼去掉之后,大家都發(fā)現(xiàn)了滴滴一點都不便宜,道理很簡單——不管是專車還是出租車,還是需要由人來開,人工成本降不下來,就不可能便宜。

3. 真正能夠提高社會生產(chǎn)力,解決供需關(guān)系不平衡的就是人工智能;

人工智能將給社會生產(chǎn)力帶來的提高,以及對人類帶來的影響將遠(yuǎn)遠(yuǎn)超過互聯(lián)網(wǎng)。

還是拿醫(yī)療來說,很多基層醫(yī)院水平不高,那未來完全可以通過人工智能來輔助醫(yī)生讀 CT、X光等醫(yī)療影像。像今年,IBMWatson 對皮膚黑色素瘤的診斷,準(zhǔn)確率已提高至 97%,遠(yuǎn)遠(yuǎn)超過了人類專家 75%-84% 的平均水平。

未來,人工智能無論是在無人車、機(jī)器人、醫(yī)療、金融、教育還是其他領(lǐng)域,都將爆發(fā)巨大的社會效益,這點毋庸置疑。

我建議現(xiàn)在的創(chuàng)業(yè)者更應(yīng)該關(guān)注人工智能領(lǐng)域的創(chuàng)業(yè)機(jī)會。

第二個問題:人工智能 vs 人工智能+

人工智能主要分三層。最底層是基礎(chǔ)架構(gòu)(Infrastructure),包括云計算、芯片以及 TensorFlow 這樣的框架。在基礎(chǔ)層之上是中間層,叫通用技術(shù)(EnablingTechnology),例如圖像識別、語音識別、語義理解、機(jī)器翻譯這些。

基礎(chǔ)層和中間層,是互聯(lián)網(wǎng)巨頭的必爭之地。比如芯片領(lǐng)域,Intel、英偉達(dá)、高通都投入巨資,競爭極其激烈。同樣云計算、框架也是一樣,都不是小公司能夠涉足的領(lǐng)地。

現(xiàn)在對于中間層的通用技術(shù),BAT 也極其重視。因為大家都相信人工智能是下一波工業(yè)革命浪潮。對騰訊、阿里、百度這些巨頭來講,要想在大浪中屹立不倒,必須要構(gòu)建出人工智能的生態(tài)系統(tǒng)(Ecosystem)。而核心就是要依靠這些 Enabling Technology 技術(shù)。

 

[[205876]]

 

相比創(chuàng)業(yè)公司,BAT 的最大優(yōu)勢是什么呢?第一,不缺數(shù)據(jù);第二,為了構(gòu)建自己的生態(tài)系統(tǒng),未來通用技術(shù)一定全部是免費的;第三,雖然通用技術(shù)免費,但 BAT 有羊毛出在身上的豬機(jī)會。這是典型的互聯(lián)網(wǎng)打法。

這里的豬是什么?豬就是云計算。例如百度的 ABC 策略,分別代表人工智能(AI)、大數(shù)據(jù)(Big Data)和云計算(Cloud Computing)。AI 我可以不賺錢,開放給大家,那么大家想享受我的服務(wù),就來買我的云吧。

而對于創(chuàng)業(yè)企業(yè)來說,只做圖像識別、語音識別、語義理解、機(jī)器翻譯這些通用技術(shù),指望通過 SDK 賣錢,未來路會越來越窄,特別是 BAT 都免費的壓力下。

所以從這個角度講,創(chuàng)業(yè)公司做下面兩層風(fēng)險比較大。我認(rèn)為創(chuàng)業(yè)公司的機(jī)會在最上層,就是拿著下兩層的成果去服務(wù)垂直行業(yè),也就是我們所謂的人工智能+。

第三個問題:人工智能 + vs + 人工智能

深入垂直行業(yè)的人工智能+,又可細(xì)分為兩類情況:即“人工智能+行業(yè)”和“行業(yè)+人工智能”,他們間有明顯的區(qū)別。

“AI+ 行業(yè)”簡單講就是在 AI 技術(shù)成熟之前,這個行業(yè)、產(chǎn)品從未存在過。比如自動駕駛,亞馬遜的 Echo 智能音箱、蘋果的 Siri 語音助手。在人工智能技術(shù)未突破前,不存在這樣的產(chǎn)品。因為 AI,創(chuàng)造出了一條全新的產(chǎn)業(yè)鏈。

“行業(yè) +AI”就是行業(yè)本身一直存在,產(chǎn)業(yè)鏈條成熟,只是以前完全靠人工,效率比較低,現(xiàn)在加入 AI 元素后,使得行業(yè)效率有了明顯提高。比如安防、醫(yī)療等領(lǐng)域。

客觀講,這兩個類別都有創(chuàng)業(yè)機(jī)會。但“AI+ 行業(yè)”,因為是一條新的產(chǎn)業(yè)鏈,創(chuàng)業(yè)公司與互聯(lián)網(wǎng)巨頭實際是處在同一起跑線上。巨頭們坐擁數(shù)據(jù)優(yōu)勢。所以從這個角度,“行業(yè) +AI”相對對創(chuàng)業(yè)公司更為友好,也更容易構(gòu)建出壁壘。

我認(rèn)為,未來行業(yè)壁壘才是人工智能創(chuàng)業(yè)最大的護(hù)城河。因為每個行業(yè)都有垂直縱深, 盡管 BAT 技術(shù)好一點、并不關(guān)鍵。拿醫(yī)療 +AI 舉例,什么最重要?大量準(zhǔn)確的被醫(yī)生標(biāo)注過的數(shù)據(jù)最重要。沒有數(shù)據(jù),再天才的科學(xué)家也無用武之地。

但在國內(nèi),這個醫(yī)療數(shù)據(jù)拿出來非常困難。所以 BAT 做醫(yī)療一點優(yōu)勢都沒有,因為他們要把這些數(shù)據(jù),從各醫(yī)院、各科室搞出來也很累。相反,如果一個創(chuàng)業(yè)者在醫(yī)療行業(yè)耕耘很多年,也許拿起數(shù)據(jù)來比大公司更容易。

這要求創(chuàng)始團(tuán)隊的合伙人中,必須有懂行業(yè)、有行業(yè)資源的人才。這與互聯(lián)網(wǎng)+一樣,一旦細(xì)分到具體行業(yè),并不是說你百度、騰訊有資金、有流量,投入人才就什么都能做,比拼的還有行業(yè)資源和人脈。

 

[[205877]]

 

之所以跟大家聊這個話題,是因為前一段去百度大學(xué)跟大家交流,他們提到百度人工智能在無人車和 DuerOS 的應(yīng)用。同時又問我,人臉識別在國內(nèi)安防領(lǐng)域的應(yīng)用價值非常大。像海康威視有近 3000 億人民幣的市值,每年光凈利潤就有近百億。百度在 AI 方面是不是該考慮進(jìn)軍這個領(lǐng)域。我回答說千萬別,因為安防是典型的、有巨大壁壘的“行業(yè) +AI”領(lǐng)域。

即使百度技術(shù)好,在人臉識別率方面比??低暩咭粋€百分點(實際不一定,海康背后有幾百人的 AI 研發(fā)團(tuán)隊)。但這并不代表百度就能替代???。因為安防是“非關(guān)鍵性應(yīng)用”(non-mission-critical),100 個犯人我識別了 95 個,你比我多識別了一個做到了 96 個,其實沒那么重要。

而反過來,??祵Ρ劝俣扔惺裁磧?yōu)勢?首先??凳亲鰯z像頭的,用自己的硬件跑自己的算法,是很自然的事兒。就像蘋果手機(jī),軟硬一體體驗更好。其次,??底隽诉@么多年的安防,積累了非常多的數(shù)據(jù),人臉的數(shù)據(jù)、環(huán)境的數(shù)據(jù)……在安防領(lǐng)域有數(shù)據(jù)優(yōu)勢。最后,??到o公安系統(tǒng)做了很多類似警務(wù)通、基站信息采集、視圖檔案管理等 SaaS 平臺的東西,以及警用云系統(tǒng)。我們可以認(rèn)為公安系統(tǒng)的 IT 化,其中有一部分就是海康威視參與的。

這些東西可能不賺錢,但卻為??禈?gòu)建了壁壘。因為底層的基礎(chǔ)設(shè)施都是我建的,那前端的東西就只能用我的(我可以有 100 個理由,說競品與我不兼容)。而且??底隽诉@么長時間,積累了大量的客戶資源,特別是政府公安局的資源,開拓這些資源非常需要時間。

 

[[205878]]

 

這些就是所謂的行業(yè)縱深。所以即使對 BAT 而言,想進(jìn)入“行業(yè) +AI”領(lǐng)域,選擇垂直賽道時,同樣要非常謹(jǐn)慎。在巨大的行業(yè)壁壘面前,真不是說我的算法比你好一些,市場就是我的,只有技術(shù)優(yōu)勢仍然差的很遠(yuǎn)。

回歸 “AI+ 行業(yè)”和“行業(yè) +AI”,通常來講前者的行業(yè)縱深會比較淺,而后者則有巨大的行業(yè)壁壘。而行業(yè)壁壘,則是創(chuàng)業(yè)公司最大的護(hù)城河,也是抵擋 BAT 的關(guān)鍵。

第四個問題:關(guān)鍵性應(yīng)用 vs 非關(guān)鍵性應(yīng)用

談到人工智能領(lǐng)域的創(chuàng)業(yè),很多人都會有個誤解,就是如果我團(tuán)隊沒有個大牛的科學(xué)家,比如斯坦福、MIT 的博士坐鎮(zhèn),我都不好意思講在人工智能方面創(chuàng)業(yè)。其實這個認(rèn)知是完全錯的。因為在人工智能領(lǐng)域,算法到底有多重要,完全取決于你要準(zhǔn)備進(jìn)入哪個行業(yè)。

根據(jù)行業(yè)和應(yīng)用場景不同,我認(rèn)人工智能的創(chuàng)業(yè)本質(zhì)上有 mission-critical 和 non-mission-critical 之分。為了方便大家理解,我們簡稱為“關(guān)鍵性應(yīng)用”和“非關(guān)鍵性應(yīng)用”。

“關(guān)鍵性應(yīng)用”要追求 99.9……%后的多個9,做不到就沒法商業(yè)化。比如大家認(rèn)為,99% 可靠度的自動駕駛能上路嗎?肯定不能,意味著 100 次就出 1 次事故。99.9% 也不行,1000 次出一次事故。

千萬記住,99% 和 99.9% 的可靠度差距并不是 0.9%,而是要反過來算,差距是 10 倍。也包括手術(shù)機(jī)器人,聽起來 99.9% 可靠度已經(jīng)很高了,但意味著 1000 次出一次醫(yī)療事故,放在美國,醫(yī)院還不得被巨額索賠搞得破產(chǎn)。

所以“關(guān)鍵性應(yīng)用”領(lǐng)域,就是一丁點兒錯都不能犯的人工智能領(lǐng)域,必須要有技術(shù)大牛、科學(xué)家或算法專家坐鎮(zhèn)。同時,這類項目研發(fā)周期都很長。

 

[[205879]]

 

正如以色列做 ADAS (高級駕駛輔助系統(tǒng))解決方案的 Mobileye 公司,今年 3 月被 Intel 以 153 億美金收購。大家知道這家公司研發(fā)周期有多長嗎?Mobileye 成立于 1999 年,到他們推出首款產(chǎn)品、掙到第一桶金已是 2007 年。長達(dá) 8 年的研發(fā)周期。這在互聯(lián)網(wǎng)創(chuàng)業(yè)里不可想象。包括谷歌無人車從 2009 年開始研發(fā),到現(xiàn)在一直沒有商業(yè)化;達(dá)芬奇手術(shù)機(jī)器人從啟動研發(fā)到 2000 年拿到美國食品藥品管理局(FDA)的認(rèn)證,花了十年時間。

“關(guān)鍵性應(yīng)用”的普遍特點就是這樣,項目通常很貴,研發(fā)周期巨長,離錢非常遠(yuǎn),需要持續(xù)的融資能力,團(tuán)隊怎樣才有持續(xù)融資?起碼要有非常好的簡歷和非常好的背景。這個是能夠持續(xù)融資的必要前提。所以大家可以看到,今天做無人駕駛的創(chuàng)業(yè)團(tuán)隊都是高富帥。因為不是高富帥,你都熬不到產(chǎn)品真正商業(yè)化應(yīng)用那天。

當(dāng)然,如果在人工智能領(lǐng)域都是“關(guān)鍵性應(yīng)用”,那就沒大多數(shù)創(chuàng)業(yè)者什么事了。實際上,人工智能領(lǐng)域的創(chuàng)業(yè),95% 都是“非關(guān)鍵性應(yīng)用(none-mission-critical)”。簡單講對這些領(lǐng)域,AI 的可靠度只要過了基礎(chǔ)線,高一點低一點區(qū)別不大。

最簡單的例子,現(xiàn)在很多公司的門禁開始用人臉識別。你今天帶個帽子,明天戴個墨鏡或口罩,識別率沒法做到 99%。可即使沒識別出來也沒問題。因為所有帶人臉識別的門禁都有地方讓你按指紋。即使指紋也刷不進(jìn)去,問題也不大,公司不還有前臺嗎。

這就是“非關(guān)鍵性應(yīng)用“。這類項目不追求 99% 后面的很多個9。實際上,國內(nèi)人工智能和機(jī)器人方向的創(chuàng)業(yè),大部分領(lǐng)域都是“非關(guān)鍵性應(yīng)用”。當(dāng)然并不是說,在這個領(lǐng)域算法不重要,你天天認(rèn)不出來也不行,所以一定要過了基礎(chǔ)的可用性門檻,偶爾出現(xiàn)問題可以容忍。“關(guān)鍵性應(yīng)用”則不能容忍。

“非關(guān)鍵性應(yīng)用“不追求高大上,簡單、實用、性價比高更重要,這樣的項目通常比拼綜合實力。包括:

  • 對行業(yè)的洞察理解。要熟知行業(yè)痛點;
  • 產(chǎn)品和工程化能力。光在實驗室里搞沒意義;
  • 成本控制。不光能做出來的產(chǎn)品,還得便宜的做出來;
  • 供應(yīng)鏈能力。不光能出貨,還要能批量生產(chǎn);
  • 營銷能力。產(chǎn)品出來了,你得把東西賣出去。團(tuán)隊里有沒有營銷高手,能不能搞定最好的渠道是關(guān)鍵。

所以大家在創(chuàng)業(yè)組團(tuán)隊時,一定要想好你選擇的賽道處于哪個領(lǐng)域,不同的賽道對于團(tuán)隊的要求是不一樣。“關(guān)鍵性應(yīng)用”必須有技術(shù)大牛坐鎮(zhèn),“非關(guān)鍵性應(yīng)用”則要求團(tuán)隊更加綜合和全面。

第五個問題:技術(shù)提供商 vs 全棧服務(wù)商

現(xiàn)在很多人工智能創(chuàng)業(yè)者都是技術(shù)背景出身,創(chuàng)業(yè)的第一個想法通常是做技術(shù)提供商。技術(shù)提供商作為創(chuàng)業(yè)的敲門磚可以。但如果只定位做技術(shù)提供商,未來路會非常窄。為什么說未來只做技術(shù)提供商價值會越來越小?原因有幾點:

1. 首先通用技術(shù)一定是大公司的賽道,BAT 未來一定會開放免費。

人家大公司會免費提供人臉識別、語音識別、語義理解、機(jī)器翻譯這類 EnablingTechnology,你還打算怎么靠 API 調(diào)用賺錢呢?也許現(xiàn)在還可賺點小錢,但很難成為一個長久的生意。

2. 依托于算法的技術(shù)壁壘會越來越低。

未來隨著基礎(chǔ)計算平臺和開源平臺的豐富成熟,技術(shù)方面的壁壘會越來越不明顯,整個人工智能的技術(shù)準(zhǔn)入門檻會越降越低。就像 2008 年你想找個 IOS 開發(fā)者,很難,現(xiàn)在卻很容易一樣,所有技術(shù)的演進(jìn)都遵循這一規(guī)律。特別隨著今天各大學(xué)的計算機(jī)專業(yè),都紛紛開設(shè)機(jī)器學(xué)習(xí)課程,未來人才不缺,這會拉低整個行業(yè)的進(jìn)入門檻。

同時隨著谷歌 TensorFlow 等生態(tài)系統(tǒng)的成熟,很多領(lǐng)域都會有訓(xùn)練好的模型可以用來參考(出 Demo 會更快),創(chuàng)業(yè)者只要有足夠的數(shù)據(jù)來訓(xùn)練參數(shù)就好了。所以未來算法的壁壘會越來越低,如果這個公司的核心競爭力只是算法,那將非常危險。

3. 技術(shù)提供商如果不直接面向用戶/客戶提供整體解決方案,則非常容易被上下游碾壓。

對于技術(shù)提供商和算法類公司,如果你的技術(shù)壁壘不夠高,上游很可能直接把你的事做了。這樣的例子比比皆是,比如給??低曁峁┤四樧R別算法的公司。問題就在于,??翟谟媚闼惴ǖ臅r候,人家也有龐大的研發(fā)團(tuán)隊在研究自己的算法?,F(xiàn)在用你是人家還沒準(zhǔn)備好,一旦準(zhǔn)備好立刻會把你替換掉。

即使在有一定技術(shù)門檻的行業(yè),技術(shù)提供商的日子同樣并不好過。比如專注嵌入式的視覺處理芯片的 Movidius,大疆無人機(jī)一直在用他們的芯片。但自從大疆統(tǒng)治了消費級無人機(jī)市場后,大疆現(xiàn)在也很自然地開始研發(fā)自己的芯片。

按說芯片的技術(shù)壁壘并不低,但只要行業(yè)集中度高,贏家就會選擇通吃。比如做手機(jī)的廠商,出貨量到了一個閥值,都有動力自己做芯片。像蘋果、三星、華為還有現(xiàn)在的小米,都選擇了自己做手機(jī) CPU。所以聯(lián)發(fā)科、高通這些技術(shù)提供商,其實是挺痛苦的。

這其實是一個產(chǎn)業(yè)鏈通用規(guī)律:產(chǎn)業(yè)鏈上的壟斷者會吃掉所有利潤,而且他們非常有動力往上游或下游擴(kuò)展。拿 PC 產(chǎn)業(yè)鏈舉例,內(nèi)存、硬盤、整機(jī)、顯示器……都不賺錢。錢被誰賺走了?Windows 和 Intel 卻賺走了絕大部分利潤。

 

[[205880]]

 

既然做純技術(shù)提供商沒有出路,那怎么辦?浩哥提出“一橫一縱”理論。前期做技術(shù)服務(wù)可以,但是不能一輩子做技術(shù)服務(wù)。

“一橫”就是指你提供的技術(shù)服務(wù)。通常“一橫”能服務(wù)很多行業(yè),一定要找到1、2 個,你認(rèn)為最有市場機(jī)會,最適合你的垂直領(lǐng)域,深扎進(jìn)去做“全棧”:把技術(shù)轉(zhuǎn)化為產(chǎn)品,然后搞定用戶賣出去,實現(xiàn)商業(yè)變現(xiàn),再通過商業(yè)反饋更多的數(shù)據(jù),更加夯實自己的技術(shù)。一句話講,要做技術(shù)、產(chǎn)品、商業(yè)和數(shù)據(jù)四位一體的“全棧”,這就是“一縱”。這才是健康的商業(yè)模式。

在垂直外的行業(yè),因為沒有利益沖突,你仍可老老實實的做技術(shù)服務(wù)。這樣的話,商業(yè)上你能吃透一個垂直行業(yè),技術(shù)上你還能通過橫向合作,形成更多的數(shù)據(jù)回路,從而夯實你的技術(shù)。這個就是“一橫一縱”理論。

那么對于技術(shù)創(chuàng)業(yè)公司,從“一橫”走到“一縱”,要選哪個垂直領(lǐng)域,取決 5 個關(guān)鍵因素:

市場空間夠不夠大?

做垂直領(lǐng)域的全棧,還是做橫向的技術(shù)提供商?取決市場空間哪個更大。找對垂直領(lǐng)域,即使只占一點點市場份額,也可能比做“一橫”全歸你的收益大。拿美圖公司舉例,他們有美圖秀秀、美拍、美顏相機(jī)等 APP,同時還會跟很多手機(jī)廠商合作,提供相機(jī)拍攝的美顏效果,你可以理解這就是技術(shù)服務(wù)。

但研究 2016 財報后,大家知道美圖秀秀選的“一縱”是什么嗎?就是美圖手機(jī)。以上提到的技術(shù)服務(wù)都遠(yuǎn)沒有垂直做美圖手機(jī)賺錢。美圖手機(jī)占了公司全部營收的 93%。雖然美圖手機(jī)去年的銷量大約在 74.8 萬臺,僅僅只占國內(nèi)手機(jī)市場全年銷量 5 億多臺的不足 0.15%。

行業(yè)集中度如何?

做“一橫”技術(shù)提供商時,最擔(dān)心的是你的上游或下游過于集中,或者說頭部效應(yīng)越明顯,對技術(shù)提供商就越不利。舉個簡單的例子,IDC 時代,HP、DELL 等廠商賣服務(wù)器,都是直接賣給各 IT 公司,大家日子過的都很滋潤。但 2010 年之后就很難做了,因為云計算出現(xiàn)了。

提供云計算的廠商就那幾個,兩只手就能數(shù)出來。而且頭部效應(yīng)極其明顯,僅阿里云一家占了 50% 以上份額。如果你是一個技術(shù)提供商,在跟這么壟斷的行業(yè)去談判,你會發(fā)現(xiàn)沒有任何籌碼。所以現(xiàn)在就很悲催,假設(shè)我是阿里云,會讓你列出 BOM 成本,我就給你5% 或 10% 的利潤,這個生意就很難做了。

在這種情況下,你當(dāng)然有意愿也往上游走。但帶來的問題是什么?如果上游集中度高,說明這事的壁壘很高,你作為技術(shù)提供商想往上走,同樣很困難;如果這個上游集中度低或客戶很零散,對你是件好事。但是你也沒有太大動力往上游走,因為這個市場本來就很零散,你即使殺進(jìn)去,可能只有1% 的市場份額,而且使得 99% 的人都變成你的競爭對手了。這是個悖論。

技術(shù)是改良還是革命?

如果你的技術(shù)創(chuàng)新對這個垂直領(lǐng)域是革命性的,就越有機(jī)會走到上游。如果只是改良性的,你就老老實實在下游賺個辛苦錢算了。 越是顛覆性的東西,越有機(jī)會往上游走。因為上游越離不開你,意味著你有機(jī)會做他的事。

打個異想天開的比方,如果你能提供一個“待機(jī)一禮拜”的電池,那你就可以考慮自己做手機(jī),你的手機(jī)只打一點:一星期不用充電,而且是全球唯一!就這一點可能就夠了,因為這個技術(shù)是革命性的。相反,如果是改良性的技術(shù),例如你的電池待機(jī)只是比以前多了 10~20%,那你還是老老實實賣電池吧。

雙方壁壘誰更高?

技術(shù)提供商的壁壘和上游客戶的壁壘哪個更高,也決定做“一縱”的成敗。拿比較火的直播平臺而言,現(xiàn)在都有美顏功能,例如給女孩長出個耳朵那種,這個通常都是第三方提供的技術(shù)。技術(shù)本身的壁壘并不高,很多公司都能提供,雖然效果有一些小的差異,但你沒有明顯優(yōu)勢。

可是直播的壁壘相當(dāng)高,這事有網(wǎng)絡(luò)效應(yīng),用戶越多會吸引更多的美女主播,因為能賺到更多錢,美女主播越多,也會帶來更多的用戶。同時你舍得花錢,需要很多資金來買流量以及簽約很 NB 的主播。所以這個事壁壘很高。你做技術(shù)提供商壁壘不高。這種情況下,雖然技術(shù)提供商只能賺個辛苦錢,但是仍然完全沒有機(jī)會往上游走。

到底跟團(tuán)隊基因相符不相符?

能做得了技術(shù)服務(wù),不代表能做垂直解決方案,做全棧,因為團(tuán)隊不一定有行業(yè)經(jīng)驗,這是很大的問題。亞馬遜的無人便利店 Amazon Go 出來之后,國內(nèi)不少技術(shù)團(tuán)隊也想提供類似的技術(shù),甚至想做 2C 的便利店。

與他們聊完后,我都會勸他們再考慮一下,你的技術(shù)再好,對于用戶而言,他買東西的時候,會看這個便利店有人還是無人的嗎?不會,這不是優(yōu)先選項。他首要考慮的還是——哪個便利店離我更近,以及我想買的東西這個便利店有沒有。

從這個意義講,這又回到了零售的本質(zhì)。所以如果團(tuán)隊沒有零售的基因,沒有懂零售的人,就別考慮自己開便利店的事。這時候,很多人可能會問“那我找個懂行業(yè)的高管不就行了么?”這事沒那么簡單,如果 CEO 不了解行業(yè)本質(zhì),其實是很難靠一個高管去彌補(bǔ)的。

我特別相信基因決定論,如果任何一個新的商業(yè),BAT 找個懂行業(yè)的高管就能搞定了,那中國互聯(lián)網(wǎng)的生意就全是 BAT 的了,就沒創(chuàng)業(yè)公司什么事了。BAT,一個做搜索,一個做電商,一個做社交。其實他們 3 個都把對方的事情已嘗試了一遍,最后都不成功。所以大家能做什么,不能做什么,跟這個公司的基因是高度相關(guān)的。

第六個問題:2C vs 2B

最后一個問題,簡單說一下,科技成熟都需要一定的時間。因為從任何技術(shù)普及演進(jìn)的角度,幾乎都延續(xù)了先是從軍工(航天)、到政府、到企業(yè)、到 B2B2C、再到 2C 這個規(guī)律。人工智能也一樣,目前人工智能在 2C 市場還不是很成熟。

簡單說機(jī)器人,在個人消費者市場,出貨量大的機(jī)器人只有 4 類產(chǎn)品:掃地機(jī)器人、無人機(jī)、STEAM 教育類機(jī)器人和亞馬遜 ECHO 為代表的智能音箱。為什么 2C 市場早期的普及有一定的困難,簡單講幾個原因:

1. 產(chǎn)業(yè)鏈不成熟

我做一個創(chuàng)新的東西,成品有 10 個部件。每一個部件都得自己做,而且因為出貨量不大,每個部件都沒有規(guī)模效應(yīng),這就導(dǎo)致每個部件都很貴,那你最后做出成品一定很貴。這是非常大的問題。

2. 2C 是額外花錢

這也是很重要的一個問題,2C 端的用戶因為自掏腰包、額外花錢,所以對價格通常比較敏感,產(chǎn)品很貴就是一個很大的門檻。

3. 2C 產(chǎn)品的用戶期待度高

用戶買了這么貴的東西,自然對產(chǎn)品的期待度會更高很多。大家覺得我買一個機(jī)器人回來,恨不得什么都能干:又能唱歌、又能跳舞、又能聊天、又能清潔、又能講英語。但這是不現(xiàn)實的,現(xiàn)在的技術(shù)成熟度離此還有些遠(yuǎn)。

 

[[205881]]

 

相對于 2C 端,這些問題在 2B 端卻不是問題。

1. 2B 端對價格承受能力更高

首先,企業(yè)對價格的承受能力顯然比 2C 強(qiáng)很多。你說一個機(jī)器人 2 萬,2C 消費者不可能買,但企業(yè)問題不大,企業(yè)對成本承受能力高。

2. 2B 的核心目的是降成本

舉例工業(yè)機(jī)器人,10 萬塊錢一個,聽起來很貴。但一個工業(yè)機(jī)器人替代你 2 個崗位。這 2 個崗位一年也得 10 萬塊錢,還不算四險一金。然后這機(jī)器人能工作 4 年,這一下成本只有你原來的 25%,甚至不到。那么企業(yè)一算賬,覺得還是很便宜。

3. 2B 可以采取人機(jī)混合模式

還有 2B 端的機(jī)器人應(yīng)用更簡單一些。一方面大多是單任務(wù),機(jī)器人只要做好一件事就行了,實現(xiàn)起來簡單。另外,很多都是以”人機(jī)混合”模式在作業(yè)。也就是以前需要 10 個人干活,現(xiàn)在我用機(jī)器人替代一半人。簡單重復(fù)的工作用機(jī)器人替代,復(fù)雜的用剩下的 5 個人,這就是”人機(jī)混合”模式。

舉個例子,現(xiàn)在國內(nèi)外已有很多安保機(jī)器人,按固定路線去巡邏。你可以理解為移動的攝像頭,當(dāng)然算法上肯定加入了一些識別的東西。固定繞路線巡邏,這個完全可以交給機(jī)器人來做。難的是,在巡邏的過程中,如果發(fā)現(xiàn)有老太太摔倒了,讓機(jī)器人扶起來,這個目前還做不到。

但這不重要,你們后臺不還有 5 個人么,讓他們過來就好了。所以人機(jī)混合是 2B 比較主流的模式,這個大幅降低了機(jī)器人普及的難度。

最后再說一點,目前大多數(shù) AI 創(chuàng)業(yè)公司都是技術(shù)專家主導(dǎo),這很容易理解,因為現(xiàn)在技術(shù)還有壁壘,技術(shù)專家主導(dǎo)起碼保證產(chǎn)品能做出來。不過未來隨著技術(shù)門檻的降低,特別在“非關(guān)鍵應(yīng)用”領(lǐng)域里,團(tuán)隊的核心主導(dǎo),會慢慢過渡到產(chǎn)品經(jīng)理和行業(yè)專家為主,因為他們離用戶需求最近。“非關(guān)鍵應(yīng)用”領(lǐng)域,懂需求比技術(shù)實現(xiàn)更重要。長期來看,人工智能創(chuàng)業(yè)和任何其他領(lǐng)域的創(chuàng)業(yè)一樣,一定是綜合實力的比拼!

責(zé)任編輯:劉永紅 來源: 36大數(shù)據(jù)
相關(guān)推薦

2017-10-09 15:53:18

2024-10-08 08:35:01

2010-09-26 10:24:42

Facebook創(chuàng)始人

2015-09-18 16:58:58

程輝UntiedStackZStack

2022-07-02 08:40:00

并發(fā)編程

2013-09-10 14:29:13

創(chuàng)業(yè)產(chǎn)品

2012-09-13 14:08:56

創(chuàng)業(yè)創(chuàng)業(yè)機(jī)會創(chuàng)業(yè)經(jīng)驗

2024-11-14 10:05:59

2009-03-18 11:23:55

Facebook風(fēng)險投資創(chuàng)業(yè)

2009-12-04 13:10:36

傲游

2015-09-15 14:44:37

大數(shù)據(jù)核心問題

2010-03-17 09:42:39

Twitter創(chuàng)始人

2023-03-07 18:37:20

ChatGPTAI

2017-10-12 12:05:59

乂學(xué)教學(xué)AlphaGoAI

2010-08-27 10:31:56

Twitter

2012-04-10 17:40:49

Instagram創(chuàng)業(yè)

2023-12-24 14:00:33

模型代碼

2010-05-04 16:22:45

Unix系統(tǒng)

2018-12-18 10:00:27

人工智能AI自動駕駛
點贊
收藏

51CTO技術(shù)棧公眾號