自拍偷在线精品自拍偷,亚洲欧美中文日韩v在线观看不卡

從Python代碼到APP,你只需要一個小工具:GitHub已超3000星

新聞 機器學習
機器學習開發(fā)者想要打造一款 App 有多難?事實上,你只需要會 Python 代碼就可以了,剩下的工作都可以交給一個工具。

機器學習開發(fā)者想要打造一款 App 有多難?事實上,你只需要會 Python 代碼就可以了,剩下的工作都可以交給一個工具。近日,Streamlit 聯(lián)合創(chuàng)始人 Adrien Treuille 撰文介紹其開發(fā)的機器學習工具開發(fā)框架——Streamlit,這是一款專為機器學習工程師創(chuàng)建的免費、開源 app 構建框架。這款工具可以在你寫 Python 代碼的時候,實時更新你的應用。目前,Streamlit 的 GitHub Star 量已經超過 3400,在 medim 上的熱度更是達到了 9000+。  

 

 

 

 

 

[[280905]]
 

 

 

 

 

Streamlit 網站:https://streamlit.io/
GitHub地址:https://github.com/streamlit/streamlit/

 

 

用 300 行 Python 代碼,編程一個可實時執(zhí)行神經網絡推斷的語義搜索引擎。

 

以我的經驗,每一個不平凡的機器學習項目都是用錯誤百出、難以維護的內部工具整合而成的。這些工具通常用 Jupyter Notebooks 和 Flask app 寫成,很難部署,需要對客戶端服務器架構(C/S 架構)進行推理,且無法與 Tensorflow GPU 會話等機器學習組件進行很好的整合。

 

我第一次看到此類工具是在卡內基梅隆大學,之后又在伯克利、Google X、Zoox 看到。這些工具最初只是小的 Jupyter notebook:傳感器校準工具、仿真對比 app、激光雷達對齊 app、場景重現(xiàn)工具等。

 

當一個工具越來越重要時,項目經理會介入其中:進程和需求不斷增加。這些單獨的項目變成代碼腳本,并逐漸發(fā)展成為冗長的「維護噩夢」…

 

機器學習工程師創(chuàng)建 app 的流程(ad-hoc)。

 

而當一個工具非常關鍵時,我們會組建工具團隊。他們熟練地寫 Vue 和 React,在筆記本電腦上貼滿聲明式框架的貼紙。他們的設計流程是這樣式的:

工具團隊構建 app 的流程(干凈整潔,從零開始)。

 

這簡直太棒了!但是所有這些工具都需要新功能,比如每周上線新功能。然而工具團隊可能同時支持 10 多個項目,他們會說:「我們會在兩個月內更新您的工具。」

 

我們返回之前自行構建工具的流程:部署 Flask app,寫 HTML、CSS 和 JavaScript,嘗試對從 notebook 到樣式表的所有一些進行版本控制。我和在 Google X 工作的朋友 Thiago Teixeira 開始思考:如果構建工具像寫 Python 腳本一樣簡單呢?

 

我們希望在沒有工具團隊的情況下,機器學習工程師也能構建不錯的 app。這些內部工具應該像機器學習工作流程的副產品那樣自然而然地出現(xiàn)。寫此類工具感覺就像訓練神經網絡或者在 Jupyter 中執(zhí)行點對點分析(ad-hoc analysis)!同時,我們還想保留強大 app 框架的靈活性。我們想創(chuàng)造出令工程師驕傲的好工具。

 

我們希望的 app 構建流程如下:

 

 

 

Streamlit app 構建流程。

 

 

與來自 Uber、Twitter、Stitch Fix、Dropbox 等的工程師一道,我們用一年時間創(chuàng)造了 Streamlit,這是一個針對機器學習工程師的免費開源 app 框架。不管對于任何原型,Streamlit 的核心原則都是更簡單、更純粹。

 

Streamlit 的核心原則如下:

 

1. 擁抱 Python

 

Streamlit app 是完全自上而下運行的腳本,沒有隱藏狀態(tài)。你可以利用函數(shù)調用來處理代碼。只要你會寫 Python 腳本,你就可以寫 Streamlit app。例如,你可以按照以下代碼對屏幕執(zhí)行寫入操作:
import streamlit as stst.write('Hello, world!') 

 

2. 把 widget 視作變量

 

Streamlit 中沒有 callback!每一次交互都只是自上而下重新運行腳本。該方法使得代碼非常干凈:
import streamlit as stx = st.slider('x')
st.write(x, 'squared is', x * x) 

 

 

 

 

 

 

3 行代碼寫成的 Streamlit 交互 app。

 

 

 

3. 重用數(shù)據(jù)和計算

 

如果要下載大量數(shù)據(jù)或執(zhí)行復雜計算,怎么辦?關鍵在于在多次運行中安全地重用信息。Streamlit 引入了 cache primitive,它像一個持續(xù)的默認不可更改的數(shù)據(jù)存儲器,保障 Streamlit app 輕松安全地重用信息。例如,以下代碼只從 Udacity 自動駕駛項目(https://github.com/udacity/self-driving-car)中下載一次數(shù)據(jù),就可得到一個簡單快速的 app:

從Python代碼到APP,你只需要一個小工具:GitHub已超3000星

使用 st.cache,在 Streamlit 多次運行中保存數(shù)據(jù)。代碼運行說明,參見:https://gist.github.com/treuille/c633dc8bc86efaa98eb8abe76478aa81#gistcomment-3041475。

 

 

運行以上 st.cache 示例的輸出。

 

 

簡而言之,Streamlit 的工作流程如下:

 

  1. 每次用戶交互均需要從頭運行全部腳本。
  2. Streamlit 根據(jù) widget 狀態(tài)為每個變量分配最新值。
  3. 緩存保證 Streamlit 重用數(shù)據(jù)和計算。

 

如下圖所示:

 

 

 

 

 

用戶事件觸發(fā) Streamlit 從頭開始重新運行腳本。不同運行中僅保留緩存。

 

 

感興趣的話,你可以立刻嘗試!只需運行以下行:

 

 

網頁瀏覽器將自動打開,并轉向本地 Streamlit app。如果沒有出現(xiàn)瀏覽器窗口,只需點擊鏈接。

 

 

 

這些想法很簡潔,但有效,使用 Streamlit 不會妨礙你創(chuàng)建豐富有用的 app。我在 Zoox 和 Google X 工作時,看著自動駕駛汽車項目發(fā)展成為數(shù) G 的視覺數(shù)據(jù),這些數(shù)據(jù)需要搜索和理解,包括在圖像數(shù)據(jù)上運行模型進而對比性能。我看到的每一個自動駕駛汽車項目都有整支團隊在做這方面的工具。

 

 

在 Streamlit 中構建此類工具非常簡單。以下 Streamlit demo 可以對整個 Udacity 自動駕駛汽車照片數(shù)據(jù)集執(zhí)行語義搜索,對人類標注的真值標簽進行可視化,并在 app 內實時運行完整的神經網絡(YOLO)。

 

 

這個 300 行代碼寫成的 Streamlit demo 結合了語義視覺搜索和交互式神經網絡推斷。

 

整個 app 只有 300 行 Python 代碼,其中大部分是機器學習代碼。事實上,整個 app 里只有 23 次 Streamlit 調用。你可以試試看: 

 

 

 

從Python代碼到APP,你只需要一個小工具:GitHub已超3000星

 

 

 

 

 

我們與機器學習團隊合作,為他們的項目而努力時,逐漸意識到這些簡單的想法會帶來大量重要的收益:

 

 

Streamlit app 是純 Python 文件。你可以使用自己喜歡的編輯器和 debugger。

 

 


 

 

 

從Python代碼到APP,你只需要一個小工具:GitHub已超3000星

我用 Streamlit 構建 app 時喜歡用 VSCode 編輯器(左)和 Chrome(右)。

 

純 Python 代碼可與 Git 等源碼控制軟件無縫對接,包括 commits、pull requests、issues 和 comment。由于 Streamlit 的底層語言是 Python,因此你可以免費利用這些協(xié)作工具的好處。

 

Streamlit app 是 Python 腳本,因此你可以使用 Git 輕松執(zhí)行版本控制。

 

Streamlit 提供即時模式的編程環(huán)境。當 Streamlit 檢測出源文件變更時,只需點擊 Always rerun 即可。

 

 

點擊「Always rerun」,保證實時編程。

 

緩存簡化計算流程。一連串緩存函數(shù)自動創(chuàng)建出高效的計算流程!你可以嘗試以下代碼:

 

從Python代碼到APP,你只需要一個小工具:GitHub已超3000星

Streamlit 中的簡單計算流程。運行以上代碼,參見說明:https://gist.github.com/treuille/ac7755eb37c63a78fac7dfef89f3517e#gistcomment-3041436。

 

基本上,該流程涉及加載元數(shù)據(jù)到創(chuàng)建摘要等步驟(load_metadata → create_summary)。該腳本每次運行時,Streamlit 僅需重新計算該流程的子集即可。

 

從Python代碼到APP,你只需要一個小工具:GitHub已超3000星

為了保證 app 的可執(zhí)行性,Streamlit 僅計算更新 UI 所必需的部分。

 

Streamlit 適用于 GPU。Streamlit 可以直接訪問機器級原語(如 TensorFlow、PyTorch),并對這些庫進行補充。例如,以下 demo 中,Streamlit 的緩存存儲了整個英偉達 PGGAN。該方法可使用戶在更新左側滑塊時,app 執(zhí)行近乎即時的推斷。

 

該 Streamlit app 使用 TL-GAN 展示了英偉達 PGGAN 的效果。

 

Streamlit 是免費開源庫,而非私有 web app。你可以本地部署 Streamlit app,不用提前聯(lián)系我們。你甚至可以在不聯(lián)網的情況下在筆記本電腦上本地運行 Streamlit。此外,現(xiàn)有項目也可以漸進地使用 Streamlit。

 

從Python代碼到APP,你只需要一個小工具:GitHub已超3000星

漸進地使用 Streamlit 的幾種方式。

 

以上只是 Streamlit 功能的冰山一角而已。它最令人興奮的一點是,這些原語可以輕松組成復雜 app,但看起來卻只是簡單腳本。這就要涉及架構運作原理和功能了,本文暫不談及。

 

從Python代碼到APP,你只需要一個小工具:GitHub已超3000星 

Streamlit 組件圖示。

 

我們很高興與社區(qū)分享 Streamlit,希望它能夠幫助大家輕松將 Python 腳本轉化為美觀實用的機器學習 app。

 

 

責任編輯:張燕妮 來源: 機器之心
相關推薦

2021-04-16 09:17:39

機器學習人工智能AI

2022-12-28 12:29:45

duf命令

2017-07-25 14:20:13

戴爾配置功耗

2022-03-30 15:11:26

Python房價工具

2011-05-03 10:17:25

CSS

2020-04-01 11:12:43

腦機接口機器翻譯人工智能

2018-08-03 12:21:02

2020-08-25 20:10:53

GitHub代碼開發(fā)者

2013-03-29 14:46:33

App開發(fā)小工具輔助工具

2016-12-13 17:02:49

androidjava移動應用開發(fā)

2020-07-21 08:42:16

搞垮服務器日志

2021-10-20 07:48:17

DatalistCSS技巧

2018-01-05 15:36:12

工具博客寫作

2021-11-05 06:57:50

架構工具代碼

2012-02-16 10:12:23

JavaScript

2020-11-26 12:05:44

Python小工具代碼

2021-05-20 11:30:17

Python工具代碼

2022-08-24 16:26:51

Linuxcheat 命令

2021-05-10 11:06:31

Python工具代碼

2019-11-01 11:12:50

PythonExcelWindows
點贊
收藏

51CTO技術棧公眾號