2022年,教你用Python預測茅臺股票漲跌
本文摘自清華大學出版《深入淺出Python量化交易實戰(zhàn)》一書的讀書筆記,這里把作者用KNN模式做的交易策略,換成了邏輯回歸模型,試試看策略的業(yè)績會有怎樣的變化。
二話不說,上梯子,導庫拉數(shù)據(jù):
import pandas as pd
import pandas_datareader.data as web
import numpy as np
from datetime import datetime
數(shù)據(jù)甭多了,來個3年的:
end = datetime.date.today()
start = end - datetime.timedelta(days = 365*3)
我大A股,最牛X的股票,要說是茅臺,沒人反對吧?那咱搞茅臺的行情數(shù)據(jù):
cowB = web.DataReader('600519.ss', 'yahoo', start, end)
cowB.head()
拉下來本仙就驚了,2019年1月的時候,大茅臺才600多塊錢啊!不過估計當時讓本仙買,本仙也不敢。那時候我大A股過百的股票也沒多少吧!
然后我按照書里的方法,做下特征工程:
cowB['open-close'] = cowB['Open'] - cowB ['Close']
cowB ['high-low'] = cowB ['High'] - cowB ['Low']
cowB ['target'] = np.where(cowB['Close'].shift(-1) >
cowB['Close'],1,-1)
cowB = cowB.dropna()
cowB.tail()
然后就多了幾列,target里面,1表示次日上漲,-1表示次日下跌:
下面要搞模型了:
x = cowB [['open-close','high-low']]
y = cowB ['target']
拆成x和y,然后請出scikit-learn:
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
然后把數(shù)據(jù)集拆分成訓練集和測試集:
x_train, x_test, y_train, y_test = train_test_split(x, y, train_size =
0.8)
看看邏輯回歸表現(xiàn)如何:
lr = LogisticRegression()
lr.fit(x_train, y_train)
print(lr.score(x_train, y_train))
print(lr.score(x_test, y_test))
結(jié)果發(fā)現(xiàn),還沒有書里KNN的分數(shù)高:
0.5438898450946644
0.5136986301369864
邏輯回歸在訓練集里面的準確率是54.39%,與書里KNN的準確率基本持平;但是測試集里只有51.37%,比書里的KNN模型低了差不多3個百分點。
折騰了一圈,結(jié)果并不滿意。按說邏輯回歸在分類任務上的表現(xiàn),應該優(yōu)于KNN才對啊。難道是本仙的數(shù)據(jù)噪音太大了?還是說其實這種預測本身意義就不大呢?