自拍偷在线精品自拍偷,亚洲欧美中文日韩v在线观看不卡

六個(gè)步驟搞定云原生應(yīng)用監(jiān)控和告警

云計(jì)算 云原生
云原生系統(tǒng)搭建完畢之后,要建立可觀測性和告警,有利于了解整個(gè)系統(tǒng)的運(yùn)行狀況?;赑rometheus搭建的云原生監(jiān)控和告警是業(yè)內(nèi)常用解決方案,每個(gè)云原生參與者都需要了解。

云原生系統(tǒng)搭建完畢之后,要建立可觀測性和告警,有利于了解整個(gè)系統(tǒng)的運(yùn)行狀況?;赑rometheus搭建的云原生監(jiān)控和告警是業(yè)內(nèi)常用解決方案,每個(gè)云原生參與者都需要了解。

本文主要以springboot應(yīng)用為例,講解云原生應(yīng)用監(jiān)控和告警的實(shí)操,對于理論知識講解不多。等朋友們把實(shí)操都理順之后,再補(bǔ)充理論知識,就更容易理解整個(gè)體系了。

1、監(jiān)控告警技術(shù)選型

kubernetes集群非常復(fù)雜,有容器基礎(chǔ)資源指標(biāo)、k8s集群Node指標(biāo)、集群里的業(yè)務(wù)應(yīng)用指標(biāo)等等。面對大量需要監(jiān)控的指標(biāo),傳統(tǒng)監(jiān)控方案Zabbix對于云原生監(jiān)控的支持不是很好。

所以需要使用更適合云原生的監(jiān)控告警方案prometheus,prometheus和云原生是密不可分的,并且prometheus現(xiàn)已成為云原生生態(tài)中監(jiān)控的事實(shí)標(biāo)準(zhǔn)。下面來一步步搭建基于prometheus的監(jiān)控告警方案。

prometheus的基本原理是:主動去**被監(jiān)控的系統(tǒng)**拉取各項(xiàng)指標(biāo),然后匯總存入到自身的時(shí)序數(shù)據(jù)庫,最后再通過圖表展示出來,或者是根據(jù)告警規(guī)則觸發(fā)告警。被監(jiān)控的系統(tǒng)要主動暴露接口給prometheus去抓取指標(biāo)。流程圖如下:

2、前置準(zhǔn)備

本文的操作前提是:需要安裝好docker、kubernetes,在K8S集群里部署好一個(gè)springboot應(yīng)用。

假設(shè)K8S集群有4個(gè)節(jié)點(diǎn),分別是:k8s-master(10.20.1.21)、k8s-worker-1(10.20.1.22)、k8s-worker-2(10.20.1.23)、k8s-worker-3(10.20.1.24)。

3、安裝Prometheus

3.1、在k8s-master節(jié)點(diǎn)創(chuàng)建命名空間

kubectl create ns monitoring

3.2、準(zhǔn)備configmap文件

準(zhǔn)備configmap文件prometheus-config.yaml,yaml文件中暫時(shí)只配置了對于prometheus本身指標(biāo)的抓取任務(wù)。下文會繼續(xù)補(bǔ)充這個(gè)yaml文件:

apiVersion: v1
kind: ConfigMap
metadata:
  name: prometheus-config
  namespace: monitoring
data:
  prometheus.yml: |
    global:
      scrape_interval: 15s
      scrape_timeout: 15s
    scrape_configs:
    - job_name: 'prometheus'
      static_configs:
      - targets: ['localhost:9090']

3.3、創(chuàng)建configmap

kubectl apply -f prometheus-config.yaml

3.4、準(zhǔn)備prometheus的部署文件

準(zhǔn)備prometheus的部署文件prometheus-deploy.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
  name: prometheus
  namespace: monitoring
  labels:
    app: prometheus
spec:
  selector:
    matchLabels:
      app: prometheus
  template:
    metadata:
      labels:
        app: prometheus
    spec:
      serviceAccountName: prometheus
      containers:
        - image: prom/prometheus:v2.31.1
          name: prometheus
          securityContext:
            runAsUser: 0
          args:
            - "--config.file=/etc/prometheus/prometheus.yml"
            - "--storage.tsdb.path=/prometheus" # 指定tsdb數(shù)據(jù)路徑
            - "--storage.tsdb.retention.time=24h"
            - "--web.enable-admin-api" # 控制對admin HTTP API的訪問,其中包括刪除時(shí)間序列等功能
            - "--web.enable-lifecycle" # 支持熱更新,直接執(zhí)行l(wèi)ocalhost:9090/-/reload立即生效
          ports:
            - containerPort: 9090
              name: http
          volumeMounts:
            - mountPath: "/etc/prometheus"
              name: config-volume
            - mountPath: "/prometheus"
              name: data
          resources:
            requests:
              cpu: 200m
              memory: 1024Mi
            limits:
              cpu: 200m
              memory: 1024Mi
        - image: jimmidyson/configmap-reload:v0.4.0  #prometheus配置動態(tài)加載
          name: prometheus-reload
          securityContext:
            runAsUser: 0
          args:
            - "--volume-dir=/etc/config"
            - "--webhook-url=http://localhost:9090/-/reload"
          volumeMounts:
            - mountPath: "/etc/config"
              name: config-volume
          resources:
            requests:
              cpu: 100m
              memory: 50Mi
            limits:
              cpu: 100m
              memory: 50Mi   
      volumes:
        - name: data
          persistentVolumeClaim:
            claimName: prometheus-data
        - configMap:
            name: prometheus-config
          name: config-volume

3.5、準(zhǔn)備prometheus的存儲文件

準(zhǔn)備prometheus的存儲文件prometheus-storage.yaml

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: local-storage
provisioner: kubernetes.io/no-provisioner
volumeBindingMode: WaitForFirstConsumer
---
apiVersion: v1
kind: PersistentVolume
metadata:
  name: prometheus-local
  labels:
    app: prometheus
spec:
  accessModes:
    - ReadWriteOnce
  capacity:
    storage: 20Gi
  storageClassName: local-storage
  local:
    path: /data/k8s/prometheus  #確保該節(jié)點(diǎn)上存在此目錄
  persistentVolumeReclaimPolicy: Retain
  nodeAffinity:
    required:
      nodeSelectorTerms:
        - matchExpressions:
            - key: kubernetes.io/hostname
              operator: In
              values:
                - k8s-worker-2
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: prometheus-data
  namespace: monitoring
spec:
  selector:
    matchLabels:
      app: prometheus
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 20Gi
  storageClassName: local-storage

這里我使用的是k8s-worker-2節(jié)點(diǎn)作為存儲資源,讀者們使用時(shí)要改成自己的節(jié)點(diǎn)名稱,同時(shí)要在對應(yīng)的節(jié)點(diǎn)下創(chuàng)建目錄:/data/k8s/prometheus。最終時(shí)序數(shù)據(jù)庫的數(shù)據(jù)會存儲到此目錄下,見下圖:

上面的yaml中用到了pv、pvc、storageclass存儲相關(guān)的知識,后面寫篇文章講解下,這里簡單介紹下:pv、pvc、storageclass主要是為pod自動創(chuàng)建存儲資源相關(guān)的組件。

3.6、創(chuàng)建存儲資源

kubectl apply -f prometheus-storage.yaml

3.7、準(zhǔn)備用戶、角色、權(quán)限相關(guān)文件

準(zhǔn)備用戶、角色、權(quán)限相關(guān)文件prometheus-rbac.yaml:

apiVersion: v1
kind: ServiceAccount
metadata:
  name: prometheus
  namespace: monitoring
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: prometheus
rules:
  - apiGroups:
      - ""
    resources:
      - nodes
      - services
      - endpoints
      - pods
      - nodes/proxy
    verbs:
      - get
      - list
      - watch
  - apiGroups:
      - "extensions"
    resources:
      - ingresses
    verbs:
      - get
      - list
      - watch
  - apiGroups:
      - ""
    resources:
      - configmaps
      - nodes/metrics
    verbs:
      - get
  - nonResourceURLs:
      - /metrics
    verbs:
      - get
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: prometheus
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: prometheus
subjects:
  - kind: ServiceAccount
    name: prometheus
    namespace: monitoring

3.8、創(chuàng)建RBAC資源

kubectl apply -f prometheus-rbac.yaml

3.9、創(chuàng)建deployment資源

kubectl apply -f prometheus-deploy.yaml

3.10、準(zhǔn)備service資源對象文件

準(zhǔn)備service資源對象文件prometheus-svc.yaml。采用NortPort方式,供外部訪問prometheus:

apiVersion: v1
kind: Service
metadata:
  name: prometheus
  namespace: monitoring
  labels:
    app: prometheus
spec:
  selector:
    app: prometheus
  type: NodePort
  ports:
    - name: web
      port: 9090
      targetPort: http

3.11、創(chuàng)建service對象:

kubectl apply -f prometheus-svc.yaml

3.12、訪問prometheus

此時(shí)通過kubectl get svc -n monitoring獲取暴露的端口號,通過K8S集群的任意節(jié)點(diǎn)+端口號就可以訪問prometheus了。比如通過http://10.20.1.21:32459/訪問,可以看到如下界面,通過targets可以看到上面prometheus-config.yaml文件中配置的被抓取對象:

至此prometheus安裝完畢,下面繼續(xù)安裝grafana。

4、安裝Grafana

prometheus的圖表功能比較弱,一般使用grafana來展示prometheus的數(shù)據(jù),下面開始安裝grafana。

4.1、準(zhǔn)備grafana部署文件

準(zhǔn)備grafana部署文件grafana-deploy.yaml,這是一個(gè)all-in-one的文件,將Deployment、Service、PV、PVC的編排全部卸載該文件中:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: grafana
  namespace: monitoring
spec:
  selector:
    matchLabels:
      app: grafana
  template:
    metadata:
      labels:
        app: grafana
    spec:
      volumes:
        - name: storage
          persistentVolumeClaim:
            claimName: grafana-data
      containers:
        - name: grafana
          image: grafana/grafana:8.3.3
          imagePullPolicy: IfNotPresent
          securityContext:
            runAsUser: 0
          ports:
            - containerPort: 3000
              name: grafana
          env:
            - name: GF_SECURITY_ADMIN_USER
              value: admin
            - name: GF_SECURITY_ADMIN_PASSWORD
              value: admin
          readinessProbe:
            failureThreshold: 10
            httpGet:
              path: /api/health
              port: 3000
              scheme: HTTP
            initialDelaySeconds: 60
            periodSeconds: 10
            successThreshold: 1
            timeoutSeconds: 30
          livenessProbe:
            failureThreshold: 3
            httpGet:
              path: /api/health
              port: 3000
              scheme: HTTP
            periodSeconds: 10
            successThreshold: 1
            timeoutSeconds: 1
          resources:
            limits:
              cpu: 400m
              memory: 1024Mi
            requests:
              cpu: 200m
              memory: 512Mi
          volumeMounts:
            - mountPath: /var/lib/grafana
              name: storage
---
apiVersion: v1
kind: Service
metadata:
  name: grafana
  namespace: monitoring
spec:
  type: NodePort
  ports:
    - port: 3000
  selector:
    app: grafana
---
apiVersion: v1
kind: PersistentVolume
metadata:
  name: grafana-local
  labels:
    app: grafana
spec:
  accessModes:
    - ReadWriteOnce
  capacity:
    storage: 1Gi
  storageClassName: local-storage
  local:
    path: /data/k8s/grafana #保證節(jié)點(diǎn)上創(chuàng)建好該目錄
  persistentVolumeReclaimPolicy: Retain
  nodeAffinity:
    required:
      nodeSelectorTerms:
        - matchExpressions:
            - key: kubernetes.io/hostname
              operator: In
              values:
                - k8s-worker-2
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: grafana-data
  namespace: monitoring
spec:
  selector:
    matchLabels:
      app: grafana
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 1Gi
  storageClassName: local-storage

上文中依舊用到了PV、PVC、StorageClass的知識,節(jié)點(diǎn)親和選擇了k8s-worker-2節(jié)點(diǎn),同時(shí)需要在該節(jié)點(diǎn)上創(chuàng)建改目錄/data/k8s/grafana。

4.2、部署grafana資源

kubectl apply -f grafana-deploy.yaml

4.3、訪問grafana

查看對應(yīng)的service端口映射:

通過鏈接http://10.20.1.21:31881/訪問grafana,通過配置文件中的用戶名和密碼訪問grafana,再導(dǎo)入prometheus的數(shù)據(jù)源:

5、配置數(shù)據(jù)抓取

5.1、配置抓取node數(shù)據(jù)

在抓取數(shù)據(jù)之前,需要在node節(jié)點(diǎn)上配置node-exporter,這樣prometheus才能通過node-exporter暴露的接口抓取數(shù)據(jù)。

5.1.1、準(zhǔn)備node-exporter的部署文件

準(zhǔn)備node-exporter的部署文件node-exporter-daemonset.yaml:

apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: node-exporter
  namespace: kube-system
  labels:
    app: node-exporter
spec:
  selector:
    matchLabels:
      app: node-exporter
  template:
    metadata:
      labels:
        app: node-exporter
    spec:
      hostPID: true
      hostIPC: true
      hostNetwork: true
      nodeSelector:
        kubernetes.io/os: linux
      containers:
        - name: node-exporter
          image: prom/node-exporter:v1.3.1
          args:
            - --web.listen-address=$(HOSTIP):9100
            - --path.procfs=/host/proc
            - --path.sysfs=/host/sys
            - --path.rootfs=/host/root
            - --no-collector.hwmon # 禁用不需要的一些采集器
            - --no-collector.nfs
            - --no-collector.nfsd
            - --no-collector.nvme
            - --no-collector.dmi
            - --no-collector.arp
            - --collector.filesystem.ignored-mount-points=^/(dev|proc|sys|var/lib/containerd/.+|/var/lib/docker/.+|var/lib/kubelet/pods/.+)($|/)
            - --collector.filesystem.ignored-fs-types=^(autofs|binfmt_misc|cgroup|configfs|debugfs|devpts|devtmpfs|fusectl|hugetlbfs|mqueue|overlay|proc|procfs|pstore|rpc_pipefs|securityfs|sysfs|tracefs)$
          ports:
            - containerPort: 9100
          env:
            - name: HOSTIP
              valueFrom:
                fieldRef:
                  fieldPath: status.hostIP
          resources:
            requests:
              cpu: 150m
              memory: 200Mi
            limits:
              cpu: 300m
              memory: 400Mi
          securityContext:
            runAsNonRoot: true
            runAsUser: 65534
          volumeMounts:
            - name: proc
              mountPath: /host/proc
            - name: sys
              mountPath: /host/sys
            - name: root
              mountPath: /host/root
              mountPropagation: HostToContainer
              readOnly: true
      tolerations: # 添加容忍
        - operator: "Exists"
      volumes:
        - name: proc
          hostPath:
            path: /proc
        - name: dev
          hostPath:
            path: /dev
        - name: sys
          hostPath:
            path: /sys
        - name: root
          hostPath:
            path: /

5.1.2、部署node-exporter

kubectl apply -f node-exporter-daemonset.yaml

5.1.3、prometheus接入抓取數(shù)據(jù)

在之前的prometheus-config.yaml文件中繼續(xù)增加job-name,如下:

- job_name: kubernetes-nodes
  kubernetes_sd_configs:
  - role: node
  relabel_configs:
  - source_labels: [__address__]
    regex: '(.*):10250'
    replacement: '${1}:9100'
    target_label: __address__
    action: replace
  - action: labelmap
    regex: __meta_kubernetes_node_label_(.+)

完整的prometheus-config.yaml見文末。

prometheus-config.yaml文件修改完,稍等一會兒就可以看到頁面多了幾個(gè)target,如下圖所示,這些都是被prometheus監(jiān)控的對象:

5.2、配置抓取springboot actuator數(shù)據(jù)

5.2.1、配置springboot應(yīng)用

  • springboot應(yīng)用增加pom
<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-actuator</artifactId>
</dependency>
<dependency>
    <groupId>io.micrometer</groupId>
    <artifactId>micrometer-registry-prometheus</artifactId>
</dependency>
  • springboot應(yīng)用配置properties文件:
management.endpoint.health.probes.enabled=true
management.health.probes.enabled=true
management.endpoint.health.enabled=true
management.endpoint.health.show-details=always
management.endpoints.web.exposure.include=*
management.endpoints.web.exposure.exclude=env,beans
management.endpoint.shutdown.enabled=true
management.server.port=9090
  • 查看指標(biāo)鏈接

配置完之后,重新打鏡像部署到K8S集群,這里不做演示了。訪問應(yīng)用的/actuator/prometheus鏈接得到如下結(jié)果,將系統(tǒng)的指標(biāo)信息暴露出來:

5.2.2、prometheus接入抓取數(shù)據(jù)

繼續(xù)修改配置文件prometheus-config.yaml,如下:

- job_name: 'spring-actuator-many'
  metrics_path: '/actuator/prometheus'
  scrape_interval: 5s
  kubernetes_sd_configs:
  - role: pod
  relabel_configs:
  - source_labels: [__meta_kubernetes_namespace]
    separator: ;
    regex: 'test1'
    target_label: namespace
    action: keep
  - source_labels: [__address__]
    regex: '(.*):9090'
    target_label: __address__
    action: keep
  - action: labelmap
    regex: __meta_kubernetes_pod_label_(.+)

配置文件中的大概意思是,選擇“端口是9090,namespace是test1”的pod資源進(jìn)行監(jiān)控。更多的語法,讀者自行查閱prometheus官網(wǎng)。

稍等片刻,可以看到多了springboot應(yīng)用的監(jiān)控目標(biāo):

6、配置監(jiān)控圖表

指標(biāo)數(shù)據(jù)都有了,接下來就是如何配置圖表了。grafana提供了豐富的圖表,可以在官網(wǎng)上自行選擇。下文繼續(xù)配置監(jiān)控node的圖表 和 監(jiān)控springboot應(yīng)用的圖表。

配置圖表有3種方式:json文件、輸入圖表id、輸入json內(nèi)容。配置界面如下圖:

6.1、配置node監(jiān)控圖表

在上圖的界面中選擇輸入圖表id的方式,輸入圖表id8919,即可看到如下界面:

6.2、配置springboot應(yīng)用的圖表

在上圖的界面中選擇輸入json內(nèi)容的方式,輸入此鏈接下的json內(nèi)容https://img.mangod.top/blog/13-6-jvm-micrometer.json,即可看到如下圖表:

至此k8s-node監(jiān)控和springboot應(yīng)用監(jiān)控已經(jīng)完成。如果還需要更多的監(jiān)控,讀者需要自行查閱資料。

7、安裝告警alertmanager

監(jiān)控完成之后,就是安裝告警組件alertmanager了??梢赃x擇在K8S集群下的任一節(jié)點(diǎn)使用docker安裝。

7.1、安裝alertmanager

7.1.1、拉取docker鏡像

docker pull prom/alertmanager:v0.25.0

7.1.2、創(chuàng)建報(bào)警配置文件

創(chuàng)建報(bào)警配置文件alertmanager.yml之前,需要在安裝alertmanager所在節(jié)點(diǎn)上創(chuàng)建目錄/data/prometheus/alertmanager,在目錄下創(chuàng)建文件alertmanager.yml,內(nèi)容如下:

route:
  group_by: ['alertname']
  group_wait: 30s
  group_interval: 5m
  repeat_interval: 1h
  receiver: 'mail_163'
global:
  smtp_smarthost: 'smtp.qq.com:465'
  smtp_from: '294931067@qq.com'
  smtp_auth_username: '294931067@qq.com'
  # 此處是發(fā)送郵件的授權(quán)碼,不是密碼
  smtp_auth_password: '此處是授權(quán)碼,比如sdfasdfsdffsfa'
  smtp_require_tls: false
receivers:
  - name: 'mail_163'
    email_configs:
      - to: 'yclxiao@163.com'
        send_resolved: true
inhibit_rules:
  - source_match:
      severity: 'critical'
    target_match:
      severity: 'warning'
    equal: ['alertname', 'dev', 'instance']

7.1.3、安裝啟動:

docker run --name alertmanager -d -p 9093:9093 -v 
/data/prometheus/alertmanager:/etc/alertmanager prom/alertmanager:v0.25.0

7.1.4、訪問alertmanager

安裝完畢之后,通過如下鏈接訪問:http://10.20.1.21:9093/#/alerts,界面如下:

7.2、與prometheus關(guān)聯(lián)

在prometheus-configmap.yaml文件中增加如下配置,即可讓prometheus與alertmanager關(guān)聯(lián)起來,配置中的地址改成自己的prometheus地址。

7.3、配置觸發(fā)告警規(guī)則

7.3.1、增加配置目錄

在prometheus-configmap.yaml文件中增加如下配置,即可增加觸發(fā)告警的規(guī)則:

注意此處的文件目錄/prometheus/是prometheus所在存儲目錄,我這里是安裝在k8s-worker-2下,然后在prometheus的存儲目錄下建立/rules文件夾,如下圖:

至此prometheus-config.yaml全部配置完畢,最后附上完整的prometheus-config.yaml:

apiVersion: v1
kind: ConfigMap
metadata:
  name: prometheus-config
  namespace: monitoring
data:
  prometheus.yml: |
    global:
      scrape_interval: 15s
      scrape_timeout: 15s
    alerting:
      alertmanagers:
      - static_configs:
        - targets: 
          - 10.20.1.21:9093
    rule_files:
      - /prometheus/rules/*.rules
    scrape_configs:
    - job_name: 'prometheus'
      static_configs:
      - targets: ['localhost:9090']
    - job_name: "cadvisor"
      kubernetes_sd_configs:
        - role: node
      scheme: https
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
        insecure_skip_verify: true
      bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
      relabel_configs:
        - action: labelmap
          regex: __meta_kubernetes_node_label_(.+)
          replacement: $1
        - replacement: /metrics/cadvisor # <nodeip>/metrics -> <nodeip>/metrics/cadvisor
          target_label: __metrics_path__
    - job_name: kubernetes-nodes
      kubernetes_sd_configs:
      - role: node
      relabel_configs:
      - source_labels: [__address__]
        regex: '(.*):10250'
        replacement: '${1}:9100'
        target_label: __address__
        action: replace
      - action: labelmap
        regex: __meta_kubernetes_node_label_(.+)
    - job_name: 'spring-actuator-many'
      metrics_path: '/actuator/prometheus'
      scrape_interval: 5s
      kubernetes_sd_configs:
      - role: pod
      relabel_configs:
      - source_labels: [__meta_kubernetes_namespace]
        separator: ;
        regex: 'test1'
        target_label: namespace
        action: keep
      - source_labels: [__address__]
        regex: '(.*):9090'
        target_label: __address__
        action: keep
      - action: labelmap
        regex: __meta_kubernetes_pod_label_(.+)

7.3.2、配置觸發(fā)告警規(guī)則

觸發(fā)告警規(guī)則的目錄已經(jīng)定好了,接下來就是寫具體規(guī)則了,在目錄下創(chuàng)建2個(gè)觸發(fā)告警的規(guī)則文件,如上圖,文件中寫了觸發(fā)node節(jié)點(diǎn)告警規(guī)則和觸發(fā)springboot應(yīng)用的告警規(guī)則,具體內(nèi)容如下:

  • node節(jié)點(diǎn)告警規(guī)則-hoststats-alert.yaml:
groups:
  - name: hostStatsAlert
    rules:
      - alert: hostCpuUsageAlert
        expr: sum(avg without (cpu)(irate(node_cpu_seconds_total{mode!='idle'}[5m]))) by (instance) > 0.85
        for: 1m
        labels:
          severity: page
        annotations:
          summary: "Instance {{ $labels.instance }} CPU usgae high"
          description: "{{ $labels.instance }} CPU usage above 85% (current value: {{ $value }})"
      - alert: hostMemUsageAlert
        expr: (node_memory_MemTotal - node_memory_MemAvailable)/node_memory_MemTotal > 0.85
        for: 1m
        labels:
          severity: page
        annotations:
          summary: "Instance {{ $labels.instance }} MEM usgae high"
          description: "{{ $labels.instance }} MEM usage above 85% (current value: {{ $value }})"
  • springboot應(yīng)用告警規(guī)則-jvm-metrics-rules.yaml:
groups:
  - name: jvm-metrics-rules
    rules:
      # 在5分鐘里,GC花費(fèi)時(shí)間超過10%
      - alert: GcTimeTooMuch
        expr: increase(jvm_gc_collection_seconds_sum[5m]) > 30
        for: 5m
        labels:
          severity: red
        annotations:
          summary: "{{ $labels.app }} GC時(shí)間占比超過10%"
          message: "ns:{{ $labels.namespace }} pod:{{ $labels.pod }} GC時(shí)間占比超過10%,當(dāng)前值({{ $value }}%)"
      # GC次數(shù)太多
      - alert: GcCountTooMuch
        expr: increase(jvm_gc_collection_seconds_count[1m]) > 30
        for: 1m
        labels:
          severity: red
        annotations:
          summary: "{{ $labels.app }} 1分鐘GC次數(shù)>30次"
          message: "ns:{{ $labels.namespace }} pod:{{ $labels.pod }} 1分鐘GC次數(shù)>30次,當(dāng)前值({{ $value }})"
      # FGC次數(shù)太多
      - alert: FgcCountTooMuch
        expr: increase(jvm_gc_collection_seconds_count{gc="ConcurrentMarkSweep"}[1h]) > 3
        for: 1m
        labels:
          severity: red
        annotations:
          summary: "{{ $labels.app }} 1小時(shí)的FGC次數(shù)>3次"
          message: "ns:{{ $labels.namespace }} pod:{{ $labels.pod }} 1小時(shí)的FGC次數(shù)>3次,當(dāng)前值({{ $value }})"
      # 非堆內(nèi)存使用超過80%
      - alert: NonheapUsageTooMuch
        expr: jvm_memory_bytes_used{job="spring-actuator-many", area="nonheap"} / jvm_memory_bytes_max * 100 > 80
        for: 1m
        labels:
          severity: red
        annotations:
          summary: "{{ $labels.app }} 非堆內(nèi)存使用>80%"
          message: "ns:{{ $labels.namespace }} pod:{{ $labels.pod }} 非堆內(nèi)存使用率>80%,當(dāng)前值({{ $value }}%)"
      # 內(nèi)存使用預(yù)警
      - alert: HeighMemUsage
        expr: process_resident_memory_bytes{job="spring-actuator-many"} / os_total_physical_memory_bytes * 100 > 15
        for: 1m
        labels:
          severity: red
        annotations:
          summary: "{{ $labels.app }} rss內(nèi)存使用率大于85%"
          message: "ns:{{ $labels.namespace }} pod:{{ $labels.pod }} rss內(nèi)存使用率大于85%,當(dāng)前值({{ $value }}%)"
      # JVM高內(nèi)存使用預(yù)警
      - alert: JavaHeighMemUsage
        expr: sum(jvm_memory_used_bytes{area="heap",job="spring-actuator-many"}) by(app,instance) / sum(jvm_memory_max_bytes{area="heap",job="spring-actuator-many"}) by(app,instance) * 100 > 85
        for: 1m
        labels:
          severity: red
        annotations:
          summary: "{{ $labels.app }} rss內(nèi)存使用率大于85%"
          message: "ns:{{ $labels.namespace }} pod:{{ $labels.pod }} rss內(nèi)存使用率大于85%,當(dāng)前值({{ $value }}%)"
      # CPU使用預(yù)警
      - alert: JavaHeighCpuUsage
        expr: system_cpu_usage{job="spring-actuator-many"} * 100 > 85
        for: 1m
        labels:
          severity: red
        annotations:
          summary: "{{ $labels.app }} rss CPU使用率大于85%"
          message: "ns:{{ $labels.namespace }} pod:{{ $labels.pod }} rss內(nèi)存使用率大于85%,當(dāng)前值({{ $value }}%)"
  • 告警文件準(zhǔn)備好之后,先重啟alertmanager,再重啟prometheus:

kubectl delete -f prometheus-deploy.yamlkubectl apply -f 
prometheus-deploy.yaml
  • 查看界面

此時(shí)查看alertmanager的status,可以看到如下界面:

此時(shí)查看promethetus的rules,可以看到如下界面:

7.3.3、注意點(diǎn)

改了alertmanager的告警配置要重啟alertmanager才生效。

alertmanager.yml中的smtp_auth_password配置的是郵件發(fā)送的授權(quán)碼,不是郵箱密碼。郵箱的授權(quán)碼的配置如下圖,下圖以QQ郵箱為例:

至此基于Prometheus和Grafana的監(jiān)控和告警已經(jīng)安裝完畢。

8、測試告警

安裝完畢后,簡單測試下告警效果。有2種方式測試。

方式1:將告警規(guī)則值調(diào)低,會收到如下郵件:

方式2:通過命令cat /dev/zero>/dev/null拉高node節(jié)點(diǎn)的cpu或者拉高容器的cpu,,會收到如下郵件:

9、總結(jié)

本文主要講解基于Prometheus + Grafana的云原生應(yīng)用監(jiān)控和告警的實(shí)戰(zhàn),助你快速搭建系統(tǒng),希望對你有幫助!

責(zé)任編輯:華軒 來源: 不焦躁的程序員
相關(guān)推薦

2022-04-06 18:46:35

云戰(zhàn)略云計(jì)算云服務(wù)

2011-11-18 10:04:46

Citrix私有云

2021-09-09 13:39:39

云計(jì)算私有云工具

2015-07-28 10:52:36

DevOps

2022-09-30 13:32:25

云原生云原生開發(fā)

2022-04-01 12:23:03

云原生云安全

2010-09-07 14:42:28

2021-06-22 14:53:35

零信任網(wǎng)絡(luò)安全網(wǎng)絡(luò)攻擊

2022-06-07 09:40:16

Linux應(yīng)用服務(wù)器

2018-07-19 06:17:09

數(shù)據(jù)完整性數(shù)據(jù)安全網(wǎng)絡(luò)安全

2013-03-06 10:54:03

云服務(wù)實(shí)踐關(guān)鍵步驟

2019-02-20 13:25:28

無邊界網(wǎng)絡(luò)網(wǎng)絡(luò)安全網(wǎng)絡(luò)攻擊

2024-03-06 10:50:30

云計(jì)算云實(shí)例云提供商

2010-05-31 09:12:09

2023-10-23 06:41:29

亞馬遜云

2010-08-30 11:28:53

DHCP工作過程

2021-10-21 08:00:00

開發(fā)技能技術(shù)

2014-12-31 09:48:25

云數(shù)據(jù)恢復(fù)云遷移

2023-08-04 12:07:11

2021-09-27 10:42:23

數(shù)據(jù)分析數(shù)據(jù)大數(shù)據(jù)
點(diǎn)贊
收藏

51CTO技術(shù)棧公眾號