自拍偷在线精品自拍偷,亚洲欧美中文日韩v在线观看不卡

交互式圖形用戶界面(GUI)應(yīng)用程序 | 基于顏色的對(duì)象檢測(cè)和追蹤

人工智能 深度學(xué)習(xí)
在本文中,我將展示如何創(chuàng)建一個(gè)GUI,用于使用它們的顏色來檢測(cè)和追蹤對(duì)象。

大多數(shù)時(shí)候,用于對(duì)象檢測(cè)和追蹤的都是深度學(xué)習(xí)模型。的確,深度學(xué)習(xí)非常強(qiáng)大,但也存在其他的對(duì)象檢測(cè)和追蹤方法。在本文中,我將展示如何創(chuàng)建一個(gè)GUI,用于使用它們的顏色來檢測(cè)和追蹤對(duì)象。

檢測(cè)魚類

顏色可以用不同的格式表示。有多種方式來表示顏色:

  • RGB(紅,綠,藍(lán))
  • BGR(藍(lán),綠,紅)
  • HSV(色調(diào),飽和度,值)

HSV 顏色空間

HSV代表色調(diào)、飽和度和值。這是一種常用于圖像處理和計(jì)算機(jī)視覺任務(wù)的顏色空間表示。使用HSV顏色空間進(jìn)行顏色選擇的優(yōu)勢(shì)在于它允許輕松地操作色調(diào)、飽和度和值。然而,一個(gè)缺點(diǎn)是它可能無法準(zhǔn)確表示所有顏色。如果你仔細(xì)觀察這張圖片,你會(huì)注意到你無法獲得所有顏色:

如何使用顏色進(jìn)行對(duì)象檢測(cè)?

使用顏色進(jìn)行對(duì)象檢測(cè)涉及基于圖像中對(duì)象的顏色屬性來識(shí)別對(duì)象。有5個(gè)主要步驟:

  • 選擇顏色空間:通常,HSV是一個(gè)很好的選擇。
  • 閾值處理:在選定的顏色空間中設(shè)置閾值,以隔離與要檢測(cè)的對(duì)象顏色匹配的圖像區(qū)域。例如,如果你選擇HSV顏色空間,定義色調(diào)、飽和度和值通道的范圍。如果你想檢測(cè)藍(lán)色對(duì)象,你需要為藍(lán)色定義特定的下限和上限。
  • 生成掩碼:創(chuàng)建一個(gè)二進(jìn)制掩碼,其中指定顏色范圍內(nèi)的像素設(shè)置為1(白色),范圍外的像素設(shè)置為0(黑色)。這個(gè)掩碼將分離圖像中的感興趣區(qū)域,在這種情況下,它將隔離所需的顏色。
  • 輪廓檢測(cè):找到掩碼后,找到輪廓就很簡(jiǎn)單了。OpenCV提供了cv2.findContours()函數(shù)用于查找輪廓。
  • 繪制矩形:cv2.findContours()函數(shù)將返回一系列輪廓。遍歷該列表,并使用cv2.boundingRect(contour)函數(shù)找到每個(gè)輪廓的邊界矩形的坐標(biāo)。之后,使用這些坐標(biāo)繪制矩形。

檢測(cè)藍(lán)色球體

交互式GUI應(yīng)用程序 / 代碼

我在上面的5個(gè)步驟中解釋了主要算法。在代碼部分,我用注釋解釋了所有行。程序相當(dāng)簡(jiǎn)單。用戶使用顏色條選擇一種顏色,然后程序獲取那種顏色,處理它,并提取那種顏色的對(duì)象:

import cv2
import numpy as np
import tkinter as tk
from tkinter import ttk
from PIL import Image, ImageTk

class ColorPickerApp:
    def __init__(self, master):
        self.master = master
        self.master.title("Color Picker")
        self.master.geometry("800x600")  # Adjust the size of the window

        # Create a frame to hold the color bar and color image
        self.color_bar_frame = tk.Frame(master)
        self.color_bar_frame.pack(side="top", fill="x", padx=5, pady=5)

        self.hue_label = ttk.Label(self.color_bar_frame, text="Select Hue Value (10-179):")
        self.hue_label.pack(side="left", padx=5, pady=5)

        self.hue_scale = ttk.Scale(self.color_bar_frame, from_=10, to=179, orient="horizontal", command=self.update_color)
        self.hue_scale.pack(side="left", padx=5, pady=5)

        # Create a canvas for the color image
        self.canvas_color = tk.Canvas(master, width=100, height=320)
        self.canvas_color.pack(side="left", padx=5, pady=75)

        # Create a canvas for the image
        self.canvas_image = tk.Canvas(master, width=800, height=400)
        self.canvas_image.pack(side="top", padx=5, pady=50)

        self.detect_button = ttk.Button(master, text="Detect Objects", command=self.detect_objects)
        self.detect_button.pack(side="top", padx=5, pady=5)

        self.image = None
        self.image_rgb = None
        self.image_hsv = None

        # Video capture
        self.cap = cv2.VideoCapture("fish.mp4")  # Change to 0 for webcam, or provide path for video file

        # Load the initial frame
        self.load_frame()

    def load_frame(self):
        ret, frame = self.cap.read()
        if ret:
            self.image = frame
            self.image_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            self.image_hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

            # Display the frame with detected regions
            self.display_frame(self.image_rgb)
            self.master.after(100, self.load_frame)  # Continue to load frames

    def update_color(self, value):
        hue_value = int(float(value))
        color_image = np.zeros((400, 100, 3), dtype=np.uint8)
        color_image[:, :] = (hue_value, 255, 255)
        color_image_rgb = cv2.cvtColor(color_image, cv2.COLOR_HSV2RGB)
        color_image_rgb = Image.fromarray(color_image_rgb)

        # Display the color image
        color_image_tk = ImageTk.PhotoImage(image=color_image_rgb)
        self.canvas_color.create_image(0, 0, anchor="nw", image=color_image_tk)
        self.canvas_color.image = color_image_tk

      

    def display_frame(self, frame):
        img = Image.fromarray(frame)
       
        # Get the original frame dimensions
        frame_width, frame_height = img.size
        
        
         # Define maximum width and height
        max_width = 600
        max_height = 300

        # Calculate target width and height
        target_width = min(frame_width, max_width)
        target_height = min(frame_height, max_height)

        # Calculate aspect ratio
        aspect_ratio = frame_width / frame_height

        # Adjust dimensions if necessary to fit within limits
        if aspect_ratio > max_width / max_height:
            target_width = max_width
            target_height = int(target_width / aspect_ratio)
        else:
            target_height = max_height
            target_width = int(target_height * aspect_ratio)


        # Resize the frame while maintaining the aspect ratio
        img = img.resize((target_width, target_height), Image.LANCZOS)
        
        # Convert the resized frame to PhotoImage
        img = ImageTk.PhotoImage(image=img)

         

        # Clear previous frame and display the resized frame
        self.canvas_image.delete("all")
        self.canvas_image.create_image(0, 0, anchor="nw", image=img)
        self.canvas_image.image = img

    def detect_objects(self):
        if self.image is None:
            return

        print("detecting objects")
        # Define the hue range based on the current value of the hue scale
        hue_value = int(self.hue_scale.get())
        lower_limit = np.array([hue_value - 8, 100, 100])
        upper_limit = np.array([hue_value + 8, 255, 255])

        # Create a mask to detect objects within the specified hue range
        mask = cv2.inRange(self.image_hsv, lower_limit, upper_limit)
        contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
         
        # Draw rectangles around the detected objects
        for contour in contours:
            print("contour found")
            #if cv2.contourArea(contour) > 50:
            x, y, w, h = cv2.boundingRect(contour)
            cv2.rectangle(self.image_rgb, (x, y), (x + w, y + h), (255, 255, 0), 5)

        # Display the updated frame with detected objects
        self.display_frame(self.image_rgb)

        # Call detect_objects again after a delay
        self.master.after(50, self.detect_objects)


def main():
    root = tk.Tk()
    app = ColorPickerApp(root)
    root.mainloop()


if __name__ == "__main__":
    main()

責(zé)任編輯:趙寧寧 來源: 小白玩轉(zhuǎn)Python
相關(guān)推薦

2023-09-28 08:29:15

開源工具集語音識(shí)別

2023-04-10 15:08:52

Plotly Das開發(fā)Web 應(yīng)用程序

2019-09-06 14:51:40

Python數(shù)據(jù)庫腳本語言

2011-09-01 15:54:10

app應(yīng)用

2024-07-25 08:58:16

GradioPython數(shù)據(jù)應(yīng)用

2009-06-26 16:05:04

嵌入式Linux

2023-07-28 14:13:15

Streamlit開源Python庫

2021-10-18 13:31:28

Web應(yīng)用交互式

2011-04-19 09:19:55

應(yīng)用程序項(xiàng)目管理

2009-06-10 14:59:04

Netbeans 6.應(yīng)用程序

2011-06-14 14:57:06

QT Python GUI

2015-07-14 09:50:28

PHPHTML5

2021-10-27 16:03:43

Python編程語言代碼

2024-08-02 10:30:39

StreamlitPython庫數(shù)據(jù)驅(qū)動(dòng)

2011-06-21 11:10:28

Qt Embedded

2019-07-23 23:11:21

JavaScript編程語言技術(shù)

2021-04-30 16:54:27

分散式應(yīng)用程序

2010-02-26 14:40:15

Python應(yīng)用程序

2023-12-10 14:43:30

PythonGUIeel

2023-11-29 07:30:08

Python用戶界面
點(diǎn)贊
收藏

51CTO技術(shù)棧公眾號(hào)