自拍偷在线精品自拍偷,亚洲欧美中文日韩v在线观看不卡

陶哲軒力薦,哈佛反向學習法火了:教會AI就是教會自己

人工智能
學生在教AI時需要自己理解問題,他們將問題分解為小步驟的過程本身就是一項極好的鍛煉。而且,學會提問在AI應用中也非常具有挑戰(zhàn)性,這一教學方法可以幫助學生掌握提示詞工程技術。

數學大佬陶哲軒力薦,哈佛反向學習法火了:教會AI就是教會自己。

圖片圖片

他最新分享了哈佛應用數學和應用物理學教授Michael P. Brenner的一個教學方法——

利用提示工程,讓學生嘗試教AI完成平時數學作業(yè)(不納入正式考核),期末再讓這些AI參加考試。

好嘛,相當于學生再把AI當學生,俄羅斯套娃有。

圖片圖片

Michael P. Brenner教授認為,這一方法能夠教會學生拆解問題,并深度掌握提示詞工程技術。

學生在教AI時需要自己理解問題,他們將問題分解為小步驟的過程本身就是一項極好的鍛煉。
而且,學會提問在AI應用中也非常具有挑戰(zhàn)性,這一教學方法可以幫助學生掌握提示詞工程技術。

圖片圖片

教AI解數學題,期末還要考試

提出這項創(chuàng)新教學方法的Michael P. Brenner,是一名美國應用數學家和物理學家。

他曾獲得賓夕法尼亞大學物理和數學學位,并在芝加哥大學獲得物理學博士學位。

從2001年至今,他在哈佛大學擔任教授,此前還在麻省理工擔任應用數學助理和副教授。

他的研究方向是,使用應用數學方法來解決科學和工程中的廣泛問題,特別是與流體力學和材料科學相關的問題。

接觸AI后,他對利用機器學習來促進科學發(fā)現尤為感興趣。

圖片圖片

在哈佛,他面向研一開設了一門叫做“Applied Math 201”的課程,主要教授解決硬科學問題(通常指自然科學和工程學)的數學方法。

由于他對構建可以解決復雜問題的模型和聊天機器人的想法非常感興趣,于是想出了一個新招:

在平時作業(yè)的最后,新增一個AI板塊,鼓勵學生使用哈佛的生成式AI工具箱中的聊天機器人來解決問題,并通過構建提示(prompts)來教授這些機器人。

當然,Brenner教授貼心表示,這部分成績不計入正式考核。

圖片圖片

不過學生在平時作業(yè)中需積累提示詞經驗,并提交那些效果比較好的提示詞。

到了期末,學生們需要共同完成一項最終研究,并檢驗AI的學習成果——能否完成期末考試。

據Brenner教授介紹,有15位同學參與了研究,他們被分成三組:

  • 第1組負責提示工程,收集整理大家整個學期提交的提示詞,并評估哪些提示更擅長或不擅長解決哪類問題;
  • 第2組負責數據集生成,構建一系列包含問題和解決方案的數據,且需要實現自動生成;
  • 第3組負責基礎設施建設,將提示和數據集放在一起,嘗試評估和訓練聊天機器人解決期末試題。

過程中,他們針對不同類型的問題繪制了圖(不同提示下解決方案能得多少分),并創(chuàng)建了一套評分標準,滿分25分。

圖片圖片

最終,學生們構建了一個開箱即用的數學模型,并取得了不錯成績。(最高20分)

圖片圖片

課程結束后,學生們也熱情地送上了感謝:

在這種教學中轉變了思維方式。

圖片圖片

烹飪也能碰撞應用科學原理

事實上,Michael P. Brenner教授也不是第一次整新活了!

他的另一門課《Science and Cooking: From Haute Cuisine to the Science of Soft Matter.》更是將烹飪與應用科學來了個碰撞。

圖片圖片

課程介紹是醬嬸兒的:

頂級廚師和哈佛大學研究人員探索日常烹飪和高級美食如何闡明化學、物理和工程學的基本原理。
了解食物分子以及化學反應如何影響食物的質地和風味。

簡單說,就是在學習烹飪的過程中了解科學原理,諸如分子如何影響風味、熱量在烹飪中的作用……

而且特別強調,做出來的東西要能吃(doge)。

這一番操作下來,也打破了學生們的固有認知,以至于有人感慨:

笑死,一直以為烹飪是門運氣活。

圖片圖片

所以,你還知道哪些學校有比較好玩的課程嗎?快來評論區(qū)讓我們眼饞一波~

參考鏈接:
[1]https://mathstodon.xyz/@tao/113058843359470529[2]https://www.youtube.com/watch?v=p3v8eFwDWnk[3]https://www.youtube.com/watch?v=om7VpIK90vE

責任編輯:武曉燕 來源: 量子位
相關推薦

2024-04-15 12:29:00

AI訓練

2023-10-04 08:07:06

CopilotGitHub

2024-12-09 09:35:00

AI數據訓練

2024-10-14 14:31:36

2024-02-26 08:30:00

2024-07-29 08:49:00

AI數學

2023-10-10 13:51:46

GPT-4GitHubAI

2024-07-08 13:08:04

2024-08-08 13:40:00

2023-05-15 15:13:46

智能工作

2023-09-02 11:21:54

代碼ChatGPT

2023-12-06 13:44:00

模型訓練

2023-12-16 12:47:59

2024-07-29 13:28:52

2023-10-28 13:18:05

AI工具

2023-09-04 13:16:00

人工智能模型

2019-10-15 11:46:06

技術清華大學費曼學習法

2024-03-29 09:00:00

大型語言模型ChatGPT

2024-05-23 17:18:50

2009-12-07 18:20:35

點贊
收藏

51CTO技術棧公眾號